This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367251 #50 May 26 2024 08:21:05 %S A367251 1,2,1,2,1,2,3,3,3,1,4,1,2,5,2,3,6,3,7,1,4,4,1,8,5,5,1,4,9,4,1,6,6,5, %T A367251 10,5,1,2,7,7,2,1,6,11,6,1,2,7,12,7,2,1,13,3,8,8,3,4,9,9,4,14,1,2,5, %U A367251 10,10,5,2,1,3,8,15,8,3,4,9,16,9,4,17,6,11,11,6,1,2,5,10,18,10 %N A367251 Lexicographically earliest sequence starting 1,2 which can be arranged in a mirror symmetric array shape such that a(n) is the length of the n-th row and no column has the same value more than once. %C A367251 For row 5 onward, the row contents are mirror symmetric too (palindromes), as well as the shape. %C A367251 Terms in the same column are successive positive integers (with some initial exceptions before row 5). %H A367251 Neal Gersh Tolunsky, <a href="/A367251/b367251.txt">Table of n, a(n) for n = 1..10000</a> %H A367251 Thomas Scheuerle, <a href="/A367251/a367251.png">blue: scatter plot of a(1) to a(10000); red: length of the row where a(n) is contained</a>. %H A367251 Neal Gersh Tolunsky, <a href="/A367251/a367251_5.png">First differences of first 100000 terms</a>. %H A367251 Neal Gersh Tolunsky, <a href="/A367251/a367251_6.png">Ordinal transform of first 100000 terms</a>. %H A367251 Neal Gersh Tolunsky, <a href="/A367251/a367251_7.png">Graph of first 100000 terms</a>. %e A367251 Array (or "tree") begins, with mirror symmetry in row 5 and beyond: %e A367251 columns v v v v v v v %e A367251 row 1: 1, %e A367251 row 2: 2, 1, %e A367251 row 3: 2, %e A367251 row 4: 1, 2, %e A367251 row 5: 3, %e A367251 row 6: 3, 3, %e A367251 row 7: 1, 4, 1, %e A367251 row 8: 2, 5, 2, %e A367251 row 9: 3, 6, 3, %e A367251 row 10: 7, %e A367251 row 11: 1, 4, 4, 1, %e A367251 row 12: 8, %e A367251 row 13: 5, 5, %o A367251 (MATLAB) %o A367251 function a = A367251( max_n ) %o A367251 a = [1 2 1 2 1 2]; %o A367251 odd = zeros(1,max_n); even = odd; %o A367251 odd(1) = 2; even(1)= 2; c = 5; %o A367251 while length(a) < max_n %o A367251 if mod(a(c),2) == 1 %o A367251 odd(1:(a(c)+1)/2) = odd(1:(a(c)+1)/2)+1; %o A367251 a = [a odd((a(c)+1)/2:-1:2) odd(1:(a(c)+1)/2)]; %o A367251 else %o A367251 even(1:a(c)/2) = even(1:a(c)/2)+1; %o A367251 a = [a even(a(c)/2:-1:1) even(1:a(c)/2)]; %o A367251 end %o A367251 c = c + 1; %o A367251 end %o A367251 end % _Thomas Scheuerle_, Nov 21 2023 %Y A367251 Cf. A334081, A253028. %K A367251 nonn,tabf %O A367251 1,2 %A A367251 _Neal Gersh Tolunsky_, Nov 11 2023