cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367257 a(n) = Sum_{k=0..n} binomial(n, k) * binomial(n - 1, n - k - 1) * (-n)^k.

This page as a plain text file.
%I A367257 #19 Jan 31 2024 08:06:51
%S A367257 1,1,-3,10,-15,-474,12565,-258572,5136705,-102255290,2019481101,
%T A367257 -37521627252,543274535089,1220679586140,-663297992874075,
%U A367257 45545891767647976,-2512550066073884415,129402386434475858502,-6511375580923238310755,325739815788711661063900
%N A367257 a(n) = Sum_{k=0..n} binomial(n, k) * binomial(n - 1, n - k - 1) * (-n)^k.
%H A367257 Paolo Xausa, <a href="/A367257/b367257.txt">Table of n, a(n) for n = 0..350</a>
%F A367257 a(n) = Sum_{k=0..n} A367270(n, k) * (-n)^k.
%F A367257 a(n) = JacobiP(n, 0, -2*n, 1 + 2*n).
%p A367257 a := n -> JacobiP(n, 0, -2*n, 1 + 2*n): seq(simplify(a(n)), n = 0..19);
%t A367257 A367257[n_] := JacobiP[n, 0, -2*n, 2*n+1];
%t A367257 Array[A367257, 25, 0] (* _Paolo Xausa_, Jan 31 2024 *)
%Y A367257 Cf. A367270, A367256.
%K A367257 sign
%O A367257 0,3
%A A367257 _Peter Luschny_, Nov 11 2023