cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367261 G.f. satisfies A(x) = 1 + x*A(x) * (1 + x*A(x)^2)^3.

This page as a plain text file.
%I A367261 #8 Nov 11 2023 13:55:33
%S A367261 1,1,4,16,77,393,2113,11761,67217,392140,2325691,13980390,84990482,
%T A367261 521623164,3227679457,20114056545,126125100615,795207084713,
%U A367261 5038166859565,32059491655921,204806561028553,1313023485343009,8445060537757367,54476991669555231
%N A367261 G.f. satisfies A(x) = 1 + x*A(x) * (1 + x*A(x)^2)^3.
%F A367261 If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).
%o A367261 (PARI) a(n, s=3, t=1, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
%Y A367261 Cf. A137953, A367239.
%K A367261 nonn
%O A367261 0,3
%A A367261 _Seiichi Manyama_, Nov 11 2023