This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367262 #14 Nov 13 2023 11:31:56 %S A367262 0,1,2,4,3,6,7,8,5,14,9,16,10,11,12,15,13,25,17,18,19,21,22,20,24,29, %T A367262 23,32,26,27,28,30,31,49,33,35,34,37,38,41,40,36,44,64,39,42,43,45,46, %U A367262 47,48,50,51,52,54,53,56,55,59,57,60,58,66,65,69,67,61,96 %N A367262 Lexicographically earliest sequence of distinct nonnegative integers such that the values a(0) XOR ... XOR a(k) (for some k >= 0) are all distinct (where XOR denotes the bitwise XOR operator). %C A367262 This sequence is a variant of A333400; here we combine initial terms with the XOR operator, there with the addition. %C A367262 This sequence is well defined; after some initial terms we can extend the sequence with a power of 2 greater that any prior term or even a smaller value. %C A367262 This sequence is a permutation of the nonnegative integers (with inverse A367263): %C A367262 - for any k >= 0, the least value >= 2^k is precisely 2^k, %C A367262 - all powers of 2 appear in the sequence, %C A367262 - after a power of 2, if the least value not yet in the sequence is less than this power of 2, then this value will be the next term. %H A367262 Rémy Sigrist, <a href="/A367262/b367262.txt">Table of n, a(n) for n = 0..10000</a> %H A367262 Rémy Sigrist, <a href="/A367262/a367262.txt">C++ program</a> %H A367262 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A367262 The first terms are: %e A367262 n a(n) a(0) XOR ... XOR a(n) %e A367262 -- ---- --------------------- %e A367262 0 0 0 %e A367262 1 1 1 %e A367262 2 2 3 %e A367262 3 4 7 %e A367262 4 3 4 %e A367262 5 6 2 %e A367262 6 7 5 %e A367262 7 8 13 %e A367262 8 5 8 %e A367262 9 14 6 %e A367262 10 9 15 %e A367262 11 16 31 %e A367262 12 10 21 %o A367262 (C++) See Links section. %Y A367262 Cf. A333400, A346298, A367263 (inverse), A367264. %K A367262 nonn,base %O A367262 0,3 %A A367262 _Rémy Sigrist_, Nov 11 2023