This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367267 #9 Nov 29 2023 11:03:05 %S A367267 1,0,1,0,2,1,0,3,6,1,0,4,18,12,1,0,5,40,60,20,1,0,6,75,200,150,30,1,0, %T A367267 7,126,525,700,315,42,1,0,8,196,1176,2450,1960,588,56,1,0,9,288,2352, %U A367267 7056,8820,4704,1008,72,1,0,10,405,4320,17640,31752,26460,10080,1620,90,1 %N A367267 Triangle read by rows. T(n, k) = binomial(n, k) * binomial(n - 1, k - 1). %F A367267 For k >= 2: T(n, k) = (n / k) * binomial(n-1, k-1)^2. %e A367267 Triangle T(n, k) starts: %e A367267 [0] 1; %e A367267 [1] 0, 1; %e A367267 [2] 0, 2, 1; %e A367267 [3] 0, 3, 6, 1; %e A367267 [4] 0, 4, 18, 12, 1; %e A367267 [5] 0, 5, 40, 60, 20, 1; %e A367267 [6] 0, 6, 75, 200, 150, 30, 1; %e A367267 [7] 0, 7, 126, 525, 700, 315, 42, 1; %e A367267 [8] 0, 8, 196, 1176, 2450, 1960, 588, 56, 1; %e A367267 [9] 0, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1; %p A367267 T := (n, k) -> binomial(n, k) * binomial(n - 1, k - 1): %p A367267 for n from 0 to 6 do seq(T(n, k), k = 0..n) od; %p A367267 # Or: %p A367267 T := (n, k) -> if k=0 then k^n elif k=1 then n else (n/k)*binomial(n-1, k-1)^2 fi: %p A367267 seq(seq(T(n, k), k = 0..n), n = 0..9); %t A367267 A367267[n_,k_]:=Binomial[n,k]Binomial[n-1,k-1]; %t A367267 Table[A367267[n,k],{n,0,15},{k,0,n}] (* _Paolo Xausa_, Nov 29 2023 *) %Y A367267 Cf. A088218 (row sums), A367270 (row reversed). %K A367267 nonn,tabl %O A367267 0,5 %A A367267 _Peter Luschny_, Nov 11 2023