A369374 Powerful numbers k that have a primorial kernel and more than 1 distinct prime factor.
36, 72, 108, 144, 216, 288, 324, 432, 576, 648, 864, 900, 972, 1152, 1296, 1728, 1800, 1944, 2304, 2592, 2700, 2916, 3456, 3600, 3888, 4500, 4608, 5184, 5400, 5832, 6912, 7200, 7776, 8100, 8748, 9000, 9216, 10368, 10800, 11664, 13500, 13824, 14400, 15552, 16200
Offset: 1
Keywords
Examples
This sequence is the union of the following infinite sets: P(2)^2 * A003586 = {36, 72, 108, 144, 216, 288, 324, ...} = { m*P(2)^2 : rad(m) | P(2) }. P(3)^2 * A051037 = {900, 1800, 2700, 3600, 4500, 5400, ...} = { m*P(3)^2 : rad(m) | P(3) }. P(4)^2 * A002473 = {44100, 88200, 132300, 176400, ...} = { m*P(4)^2 : rad(m) | P(4) }, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
With[{nn = 2^14}, Select[ Select[Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Not@*PrimePowerQ], And[EvenQ[#], Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}] &] ]
Comments