cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367269 Triangle T(n, k) read by rows and based on A042948 yields a permutation of the natural numbers.

This page as a plain text file.
%I A367269 #32 Jan 10 2024 04:54:44
%S A367269 1,4,3,6,5,2,13,12,9,8,15,14,11,10,7,26,25,22,21,18,17,28,27,24,23,20,
%T A367269 19,16,43,42,39,38,35,34,31,30,45,44,41,40,37,36,33,32,29,64,63,60,59,
%U A367269 56,55,52,51,48,47,66,65,62,61,58,57,54,53,50,49,46,89,88,85,84,81,80,77,76,73,72,69,68
%N A367269 Triangle T(n, k) read by rows and based on A042948 yields a permutation of the natural numbers.
%C A367269 Compare this triangle to A364390.
%F A367269 T(n, k) = (n+1) * (n+2) / 2 + n * (n mod 2) - 2 * k + (k mod 2) for 0 <= k <= n.
%F A367269 T(n, k) = T(n, 0) + A042948(k) for 0 <= k <= n.
%F A367269 T(n, 0) = (n+1) * (n+2) / 2 + n * (n mod 2) for n >= 0.
%F A367269 T(n, n) = (n^2 - n + 2) / 2 + (n+1) * (n mod 2) for n >= 0.
%F A367269 T(2*n, n) = 2 * n^2 + n + 1 + (n mod 2) for n >= 0.
%F A367269 T(n, k) = T(n, k-1) + T(n-1, k) - T(n-1, k-1) for 0 < k < n.
%F A367269 Row sums: A006003(n+1) - 2 * (-1)^n * (floor((n+1)/2))^2 for n >= 0.
%F A367269 G.f. of column k = 0: F(t, 0) = Sum_{n>=0} T(n, 0) * t^n = (1 + 3*t + t^3 - t^4) / ((1-t)^3 * (1+t)^2).
%F A367269 G.f.: F(t, x) = Sum_{n>=0, k=0..n} T(n, k) * x^k * t^n = (F(t, 0) - x * F(x*t, 0)) / (1-x) - 2*x*t / ((1-t) * (1-x*t)^2) + x*t / ((1-t) * (1-x^2*t^2)).
%F A367269 Alt. row sums: (n^(2 - n mod 2) + 2 - n mod 2) / 2 for n >= 0.
%e A367269 Triangle T(n, k) for 0 <= k <= n starts:
%e A367269 n\k :   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14
%e A367269 =================================================================
%e A367269  0  :   1
%e A367269  1  :   4   3
%e A367269  2  :   6   5   2
%e A367269  3  :  13  12   9   8
%e A367269  4  :  15  14  11  10   7
%e A367269  5  :  26  25  22  21  18  17
%e A367269  6  :  28  27  24  23  20  19  16
%e A367269  7  :  43  42  39  38  35  34  31  30
%e A367269  8  :  45  44  41  40  37  36  33  32  29
%e A367269  9  :  64  63  60  59  56  55  52  51  48  47
%e A367269 10  :  66  65  62  61  58  57  54  53  50  49  46
%e A367269 11  :  89  88  85  84  81  80  77  76  73  72  69  68
%e A367269 12  :  91  90  87  86  83  82  79  78  75  74  71  70  67
%e A367269 13  : 118 117 114 113 110 109 106 105 102 101  98  97  94  93
%e A367269 14  : 120 119 116 115 112 111 108 107 104 103 100  99  96  95  92
%e A367269 etc.
%t A367269 T[n_, k_]:= (n+1) * (n+2) / 2 + n * Mod[n,2] - 2 * k + Mod[k,2]; Table[T[n,k],{n,0,11},{k,0,n}]//Flatten (* _Stefano Spezia_, Dec 06 2023 *)
%o A367269 (PARI) T(n, k) = (n+1)*(n+2)/2+n*(n%2)-2*k+(k%2)
%Y A367269 Cf. A006003, A042948, A364390.
%K A367269 nonn,easy,tabl
%O A367269 0,2
%A A367269 _Werner Schulte_, Dec 06 2023