This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367270 #9 Nov 29 2023 11:04:11 %S A367270 1,1,0,1,2,0,1,6,3,0,1,12,18,4,0,1,20,60,40,5,0,1,30,150,200,75,6,0,1, %T A367270 42,315,700,525,126,7,0,1,56,588,1960,2450,1176,196,8,0,1,72,1008, %U A367270 4704,8820,7056,2352,288,9,0,1,90,1620,10080,26460,31752,17640,4320,405,10,0 %N A367270 Triangle read by rows. T(n, k) = binomial(n, k)*binomial(n - 1, n - k - 1). %F A367270 For 0< k < n: T(n, k) = ((n - k) / n)*binomial(n, k)^2. %e A367270 Triangle T(n, k) begins: %e A367270 [0] 1; %e A367270 [1] 1, 0; %e A367270 [2] 1, 2, 0; %e A367270 [3] 1, 6, 3, 0; %e A367270 [4] 1, 12, 18, 4, 0; %e A367270 [5] 1, 20, 60, 40, 5, 0; %e A367270 [6] 1, 30, 150, 200, 75, 6, 0; %e A367270 [7] 1, 42, 315, 700, 525, 126, 7, 0; %e A367270 [8] 1, 56, 588, 1960, 2450, 1176, 196, 8, 0; %e A367270 [9] 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 0; %p A367270 T := (n, k) -> binomial(n, k) * binomial(n - 1, n - k - 1): %p A367270 # Or: %p A367270 T := (n, k) -> if k=0 then 1 elif k=n then 0 else ((n-k)/n)*binomial(n, k)^2 fi: %p A367270 seq(seq(T(n, k), k = 0..n), n = 0..9); %t A367270 A367270[n_,k_]:=Binomial[n,k]Binomial[n-1,n-k-1]; %t A367270 Table[A367270[n,k],{n,0,15},{k,0,n}] (* _Paolo Xausa_, Nov 29 2023 *) %Y A367270 Cf. A088218 (row sums), A367267 (row reversed). %K A367270 nonn,tabl %O A367270 0,5 %A A367270 _Peter Luschny_, Nov 11 2023