cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367273 a(n) = Sum_{k=0..n} binomial(n, k)^2 * (k - n)^k.

This page as a plain text file.
%I A367273 #8 Nov 29 2023 08:51:43
%S A367273 1,1,-3,-8,81,26,-3815,17494,178241,-2817746,3552201,315952418,
%T A367273 -3635118575,-11060115936,782886068497,-7772807719574,-66097429593855,
%U A367273 2841563213504406,-26634464325602135,-375731325639156710,14734035378180288401,-142992751647059748944
%N A367273 a(n) = Sum_{k=0..n} binomial(n, k)^2 * (k - n)^k.
%F A367273 a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * A059297(n, n - k).
%p A367273 a := n -> add(binomial(n, k)^2 * (k - n)^k, k = 0..n):
%p A367273 seq(a(n), n = 0..22);
%t A367273 A367273[n_]:=If[n==0,1,Sum[Binomial[n,k]^2(k-n)^k,{k,0,n}]];
%t A367273 Array[A367273,30,0] (* _Paolo Xausa_, Nov 29 2023 *)
%Y A367273 Cf. A059297.
%K A367273 sign
%O A367273 0,3
%A A367273 _Peter Luschny_, Nov 11 2023