cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367276 Place n equally spaced points on each side of a square, and join each of these points by a chord to the 3*n new points on the other three sides: sequence gives number of vertices in the resulting planar graph.

Original entry on oeis.org

4, 9, 69, 345, 1337, 2885, 7445, 12833, 23365, 36589, 64669, 80133, 138313, 176885, 233765, 312013, 455273, 513277, 741965, 819589, 1046245, 1310761, 1692961, 1772097, 2315289, 2713997, 3165125, 3552753, 4538845, 4602985, 6015561, 6432681, 7421345, 8550485, 9439621, 10063993, 12635769
Offset: 0

Views

Author

Scott R. Shannon, Nov 11 2023

Keywords

Comments

We start with the four corner points of the square, and add n further points along each edge. Including the corner points, we end up with n+2 points along each edge, and the edge is divided into n+1 line segments.
Each of the n points added to an edge is joined by 3*n chords to the points that were added to the other three edges. There are 6*n^2 chords.

Crossrefs

Cf. A367277 (interior vertices), A367278 (regions), A367279 (edges).
If the 4*n points are placed "in general position" instead of uniformly, we get sequences A334698, A367121, A367122.
If the 4*n points are placed uniformly and we also draw chords from the four corner points of the square to these 4*n points, we get A255011, A331448, A331449, A334690.

Formula

a(n) = A367279(n) - A367278(n) + 1 (Euler).