cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367283 G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^3)^2.

This page as a plain text file.
%I A367283 #9 Nov 12 2023 04:36:07
%S A367283 1,1,4,20,116,728,4818,33100,233824,1687764,12393520,92291681,
%T A367283 695325926,5290359124,40591599128,313725215636,2440203573816,
%U A367283 19087022233906,150042056387660,1184734863936672,9392213303130904,74728563957003952,596531545003840160
%N A367283 G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^3)^2.
%F A367283 If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).
%o A367283 (PARI) a(n, s=2, t=2, u=3) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));
%Y A367283 Cf. A002293, A073155, A214372, A367282.
%Y A367283 Cf. A001764, A137952.
%K A367283 nonn
%O A367283 0,3
%A A367283 _Seiichi Manyama_, Nov 12 2023