This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367300 #16 Mar 28 2025 04:35:46 %S A367300 1,3,2,10,10,3,33,46,22,4,109,194,131,40,5,360,780,678,296,65,6,1189, %T A367300 3036,3228,1828,581,98,7,3927,11546,14514,10100,4194,1036,140,8,12970, %U A367300 43150,62601,51664,26479,8604,1722,192,9,42837,159082,261598,249720,152245,61318,16248,2712,255,10 %N A367300 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2. %C A367300 Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers. %H A367300 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), Paper No. A14. %F A367300 p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 3 + 2*x, u = p(2,x), and v = 1 - 2*x - x^2. %F A367300 p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(13 + 4*x)), b = (1/2) (2*x + 3 + 1/k), c = (1/2) (2*x + 3 - 1/k). %e A367300 First eight rows: %e A367300 1 %e A367300 3 2 %e A367300 10 10 3 %e A367300 33 46 22 4 %e A367300 109 194 131 40 5 %e A367300 360 780 678 296 65 6 %e A367300 1189 3036 3228 1828 581 98 7 %e A367300 3927 11546 14514 10100 4194 1036 140 8 %e A367300 Row 4 represents the polynomial p(4,x) = 33 + 46*x + 22*x^2 + 4*x^3, so (T(4,k)) = (33,46,22,4), k=0..3. %t A367300 p[1, x_] := 1; p[2, x_] := 3 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2; %t A367300 p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]] %t A367300 Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %t A367300 Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]] %Y A367300 Cf. A006190 (column 1); A000027 (p(n,n-1)); A107839 (row sums, p(n,1)); A001045 (alternating row sums, p(n,-1)); A030240 (p(n,2)); A039834 (signed Fibonacci numbers, p(n,-2)); A016130 (p(n,3)); A225883 (p(n,-3)); A099450 (p(n,-4)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299. %K A367300 nonn,tabl %O A367300 1,2 %A A367300 _Clark Kimberling_, Dec 23 2023