cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367300 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.

This page as a plain text file.
%I A367300 #16 Mar 28 2025 04:35:46
%S A367300 1,3,2,10,10,3,33,46,22,4,109,194,131,40,5,360,780,678,296,65,6,1189,
%T A367300 3036,3228,1828,581,98,7,3927,11546,14514,10100,4194,1036,140,8,12970,
%U A367300 43150,62601,51664,26479,8604,1722,192,9,42837,159082,261598,249720,152245,61318,16248,2712,255,10
%N A367300 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
%C A367300 Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.
%H A367300 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), Paper No. A14.
%F A367300 p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 3 + 2*x, u = p(2,x), and v = 1 - 2*x - x^2.
%F A367300 p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(13 + 4*x)), b = (1/2) (2*x + 3 + 1/k), c = (1/2) (2*x + 3 - 1/k).
%e A367300 First eight rows:
%e A367300      1
%e A367300      3      2
%e A367300     10     10      3
%e A367300     33     46     22      4
%e A367300    109    194    131     40     5
%e A367300    360    780    678    296    65     6
%e A367300   1189   3036   3228   1828   581    98    7
%e A367300   3927  11546  14514  10100  4194  1036  140  8
%e A367300 Row 4 represents the polynomial p(4,x) = 33 + 46*x + 22*x^2 + 4*x^3, so (T(4,k)) = (33,46,22,4), k=0..3.
%t A367300 p[1, x_] := 1; p[2, x_] := 3 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
%t A367300 p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
%t A367300 Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
%t A367300 Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
%Y A367300 Cf. A006190 (column 1); A000027 (p(n,n-1)); A107839 (row sums, p(n,1)); A001045 (alternating row sums, p(n,-1)); A030240 (p(n,2)); A039834 (signed Fibonacci numbers, p(n,-2)); A016130 (p(n,3)); A225883 (p(n,-3)); A099450 (p(n,-4)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299.
%K A367300 nonn,tabl
%O A367300 1,2
%A A367300 _Clark Kimberling_, Dec 23 2023