This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367318 #11 Nov 01 2024 11:48:16 %S A367318 191,311,1487,1871,2711,2999,3167,3767,4967,5519,7559,8087,10271, %T A367318 11351,11831,13679,15647,18311,18911,21647,22271,22367,23687,25799, %U A367318 26711,27239,27527,27791,29399,29879,31727,31847,33287,34367,35591,38447,38567,40127,40847,42071 %N A367318 Lesser of twin primes p such that p and p+2 are both in A115591. %C A367318 Primes p such that p+2 is also a prime and (p-1)/ord(2, p) = (p+1)/ord(2, p+2) = 2, where ord(2,k) is the multiplicative order of 2 modulo k. %C A367318 Equivalently, lesser of twin primes p such that ord(2, p+2) = ord(2, p) + 1, %C A367318 Equal consecutive values in A001917 that correspond to twin primes (p, p+2) are either 1 if p is in A319248, or 2 if p is in this sequence. %C A367318 Terms are congruent to 23 modulo 24. - _Jianing Song_, Nov 01 2024 %H A367318 Amiram Eldar, <a href="/A367318/b367318.txt">Table of n, a(n) for n = 1..10000</a> %t A367318 Select[Prime[Range[2, 4400]], PrimeQ[# + 2] && MultiplicativeOrder[2, # + 2] == MultiplicativeOrder[2, #] + 1 &] %o A367318 (PARI) is(n) = isprime(n) && isprime(n+2) && znorder(Mod(2, n + 2)) == znorder(Mod(2, n)) + 1; %Y A367318 Subsequence of A001359 and A115591. %Y A367318 Cf. A001122, A001917, A002326, A014664, A319248, A333743. %K A367318 nonn %O A367318 1,1 %A A367318 _Amiram Eldar_, Nov 14 2023