A367319 Base-2 Fermat pseudoprimes k such that (k-1)/ord(2, k) > (m-1)/ord(2, m) for all base-2 Fermat pseudoprimes m < k, where ord(2, k) is the multiplicative order of 2 modulo k.
341, 1105, 1387, 2047, 4369, 4681, 5461, 13981, 15709, 35333, 42799, 60787, 126217, 158369, 215265, 256999, 266305, 486737, 617093, 1082401, 1398101, 2113665, 2304167, 4025905, 4188889, 4670029, 6236473, 6242685, 8388607, 13757653, 16843009, 17895697, 22369621
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..182 (terms below 2^64)
- Amiram Eldar, Table of n, a(n), (a(n)-1)/ord(2, a(n)) for n = 1..182
Programs
-
Mathematica
pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; seq[kmax_] := Module[{s = {}, r, rm = 0}, Do[If[pspQ[k], r = (k - 1)/MultiplicativeOrder[2, k]; If[r > rm, rm = r; AppendTo[s, k]]], {k, 1, kmax}]; s]; seq[10^6]
-
PARI
ispsp(n) = n > 1 && n % 2 && Mod(2, n)^(n-1) == 1 && !isprime(n); lista(kmax) = {my(r, rm = 0); for(k = 1, kmax, if(ispsp(k), r = (k-1)/znorder(Mod(2, k)); if(r > rm, rm = r; print1(k, ", "))));}