cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367330 a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(-1/3, k)^2.

This page as a plain text file.
%I A367330 #8 Nov 14 2023 17:27:15
%S A367330 1,24,684,17880,493785,13108608,358702272,9579537792,261039317220,
%T A367330 6992695897440,190104989730480,5101807912472160,138496042650288420,
%U A367330 3721234160086727040,100918032317551270080,2713823288825315967360,73545091414048811297745
%N A367330 a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(-1/3, k)^2.
%C A367330 In general, for m>1, Sum_{k>=0} (-1)^k * binomial(-1/m,k)^2 = 2^(-1/m) * sqrt(Pi) / (Gamma(1 - 1/(2*m)) * Gamma(1/2 + 1/(2*m))).
%F A367330 a(n) ~ Gamma(1/3)^3 * 3^(3*n+1) / (2^(8/3) * Pi^2).
%t A367330 Table[27^n*Sum[(-1)^k*Binomial[-1/3, k]^2, {k, 0, n}], {n, 0, 16}]
%Y A367330 Cf. A358362, A367331, A367332, A367333.
%K A367330 nonn
%O A367330 0,2
%A A367330 _Vaclav Kotesovec_, Nov 14 2023