cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367331 a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(1/3, k)^2.

This page as a plain text file.
%I A367331 #6 Nov 14 2023 17:26:57
%S A367331 1,24,657,17664,477828,12888288,348197220,9397548288,253804616001,
%T A367331 6851337236952,185014241769825,4994797849546752,134872057740184128,
%U A367331 3641273395825798656,98320397048549301312,2654515896013953110016,71674988018612154171876
%N A367331 a(n) = 27^n * Sum_{k=0..n} (-1)^k*binomial(1/3, k)^2.
%C A367331 In general, for m>1, Sum_{k>=0} (-1)^k * binomial(1/m,k)^2 = 2^(1/m) * sqrt(Pi) / (Gamma(1 + 1/(2*m)) * Gamma(1/2 - 1/(2*m))).
%F A367331 a(n) ~  2^(5/3) * Pi * 3^(3*n + 1/2) / Gamma(1/3)^3.
%t A367331 Table[27^n*Sum[(-1)^k*Binomial[1/3, k]^2, {k, 0, n}], {n, 0, 16}]
%Y A367331 Cf. A358363, A367330, A367332, A367333.
%K A367331 nonn
%O A367331 0,2
%A A367331 _Vaclav Kotesovec_, Nov 14 2023