cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367335 Long leg of the only primitive Pythagorean triple whose inradius is the n-th odd prime and whose short leg is an even number.

This page as a plain text file.
%I A367335 #26 Jul 21 2025 00:39:50
%S A367335 15,35,63,143,195,323,399,575,899,1023,1443,1763,1935,2303,2915,3599,
%T A367335 3843,4623,5183,5475,6399,7055,8099,9603,10403,10815,11663,12099,
%U A367335 12995,16383,17423,19043,19599,22499,23103,24963,26895,28223,30275,32399,33123,36863
%N A367335 Long leg of the only primitive Pythagorean triple whose inradius is the n-th odd prime and whose short leg is an even number.
%C A367335 See Ejercicio 2.7. of the reference file.
%H A367335 Miguel-Ángel Pérez García-Ortega, <a href="/A367335/a367335.pdf">Capítulo 2. Inradio, El Libro de las Ternas Pitagóricas</a>.
%F A367335 a(n) = p^2 + 2*p where p = A065091(n).
%e A367335 Triangles begin
%e A367335     8,  15,  17;
%e A367335    12,  35,  37;
%e A367335    16,  63,  65;
%e A367335    24, 143, 145;
%e A367335    28, 195, 197;
%e A367335    ...
%e A367335 This sequence is the middle column.
%Y A367335 Cf. A065091, A089241 (short leg).
%K A367335 nonn,easy
%O A367335 1,1
%A A367335 _Miguel-Ángel Pérez García-Ortega_, Nov 23 2023