This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367341 #85 Jan 09 2025 12:26:45 %S A367341 18,27,36,45,54,63,72,81,918,927,936,945,954,963,972,981,9918,9927, %T A367341 9936,9945,9954,9963,9972,9981,99918,99927,99936,99945,99954,99963, %U A367341 99972,99981,999918,999927,999936,999945,999954,999963,999972,999981,9999918,9999927,9999936,9999945,9999954,9999963,9999972,9999981 %N A367341 Numbers without comma-successors: these are the numbers k such that if the commas sequence A121805 is started at k instead of 1, there is no second term. %C A367341 Comment from _N. J. A. Sloane_, Nov 19 2023 (Start) %C A367341 Theorem. This sequence consists precisely of the decimal numbers of the form %C A367341 99...9xy = 100*(10^i-1) + 9*x + 9, %C A367341 with i >= 0 copies of 9, and 1 <= x <= 8. %C A367341 (See link for proof.) This was stated without proof by _David W. Wilson_ in 2007 (see the Angelini link), and was conjectured (in a slightly less precise form) by _Ivan N. Ianakiev_, Nov 16 2023. %C A367341 This implies that the conjecture below is true, as well as the conjecture in A367342. %C A367341 All terms are multiples of 9, and A367342 gives a(n)/9. %C A367341 (End) %C A367341 Numbers k such that A367338(k) = A367339(k) = -1. %C A367341 By definition, A330129 is a subsequence. %H A367341 N. J. A. Sloane, <a href="/A367341/b367341.txt">Table of n, a(n) for n = 1..408</a> %H A367341 Eric Angelini, <a href="/A121805/a121805.pdf">The Commas Sequence</a>, Message to Sequence Fans, Sep 06 2016. [Cached copy, with permission] %H A367341 Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, The Comma Sequence: A Simple Sequence With Bizarre Properties, <a href="http://arxiv.org/abs/2401.14346">arXiv:2401.14346</a>, Fibonacci Quarterly 62:3 (2024), 215-232. %H A367341 Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, <a href="/A121805/a121805_1.pdf">The Comma Sequence: A Simple Sequence With Bizarre Properties</a>, Local copy. %H A367341 N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=_EHAdf6izPI">Eric Angelini's Comma Sequence</a>, Experimental Math Seminar, Rutgers Univ., January 18, 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane2024.pdf">Slides</a> %F A367341 The first eight terms are given by a(i) = 9*(i+1), for 1 <= i <= 8; thereafter, each successive block of eight terms is obtained by prefixing the terms of the previous block by 9. - _Michael S. Branicky_, Nov 15 2023 [This follows from the theorem above. - _N. J. A. Sloane_, Nov 19 2023] %p A367341 for i from 0 to 4 do t1:=100*(10^i-1); %p A367341 for x from 1 to 8 do lprint(t1+9*x+9); %p A367341 od: od: %t A367341 fQ[n_]:=Module[{k=n+10*Last[IntegerDigits[n]]+Range[9]}, Select[k,#-n==FromDigits[{Last[IntegerDigits[n]],First[IntegerDigits[#]]}]&]] =={}; %t A367341 Select[Range[10^5],fQ[#]&] (* _Ivan N. Ianakiev_, Nov 16 2023 *) %o A367341 (Python) %o A367341 from itertools import islice %o A367341 def ok(n): %o A367341 an, y = n, 1 %o A367341 while y < 10: %o A367341 an, y = an + 10*(an%10), 1 %o A367341 while y < 10: %o A367341 if str(an+y)[0] == str(y): %o A367341 an += y %o A367341 break %o A367341 y += 1 %o A367341 if y < 10: %o A367341 return False %o A367341 return True %o A367341 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Nov 15 2023 %Y A367341 Cf. A121805, A367338, A367339, A367340, A367342. %K A367341 nonn,base %O A367341 1,1 %A A367341 _N. J. A. Sloane_, Nov 15 2023 %E A367341 a(33) and beyond from _Michael S. Branicky_, Nov 15 2023