cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367345 Compute the commas sequence starting at 1, as in A121805, except do the calculations in hexadecimal. The terms are written here in decimal.

This page as a plain text file.
%I A367345 #25 Nov 18 2023 18:08:38
%S A367345 1,18,53,141,350,576,578,612,678,777,924,1120,1124,1192,1325,1539,
%T A367345 1593,1743,1990,2094,2327,2448,2457,2611,2669,2888,3027,3087,3340,
%U A367345 3545,3703,3829,3924,4003,4066,4099,4148,4213,4294,4391,4504,4633,4778,4939,5116,5309,5518
%N A367345 Compute the commas sequence starting at 1, as in A121805, except do the calculations in hexadecimal. The terms are written here in decimal.
%C A367345 When written in hexadecimal the terms are 1, 12, 35, 8D, 15E, 240, 242, 264, 2A6, 309, 39C, 460, 464, 4A8, 52D, 603, 639, 6CF, 7C6, 82E, 917, 990, 999, A33, A6D, B48, BD3, C0F, D0C, DD9, ...
%C A367345 Finite with last term a(144693554136426354) = 18446744073709551480, which is FFFFFFFFFFFFFF78 in hexadecimal. - _Michael S. Branicky_, Nov 18 2023
%H A367345 Michael S. Branicky, <a href="/A367345/b367345.txt">Table of n, a(n) for n = 1..100000</a>
%e A367345 See A367344 for examples of similar calculations in base 8.
%o A367345 (Python)
%o A367345 from itertools import islice
%o A367345 from sympy.ntheory.factor_ import digits
%o A367345 def agen(b=16): # generator of terms
%o A367345     an, y = 1, 1
%o A367345     while y < b:
%o A367345         yield an
%o A367345         an, y = an + b*(an%b), 1
%o A367345         while y < b:
%o A367345             if str(digits(an+y, b)[1]) == str(y):
%o A367345                 an += y
%o A367345                 break
%o A367345             y += 1
%o A367345 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Nov 16 2023
%Y A367345 Cf. A121805, A367343, A367344.
%K A367345 nonn,base,fini
%O A367345 1,2
%A A367345 _N. J. A. Sloane_, Nov 15 2023, following a suggestion from _William Cheswick_