A367348 a(1) = 1, a(2) = 11; thereafter, a(n+1) = a(n) + x + 10*y, where x and y are respectively the first and last digits of a(n).
1, 11, 22, 44, 88, 176, 237, 309, 402, 426, 490, 494, 538, 623, 659, 755, 812, 840, 848, 936, 1005, 1056, 1117, 1188, 1269, 1360, 1361, 1372, 1393, 1424, 1465, 1516, 1577, 1648, 1729, 1820, 1821, 1832, 1853, 1884, 1925, 1976, 2037, 2109, 2201, 2213, 2245, 2297, 2369
Offset: 1
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Join[{1},NestList[#+First[IntegerDigits[#]]+10Mod[#,10]&,11,100]] (* Paolo Xausa, Nov 17 2023 *)
-
Python
from itertools import islice def agen(): # generator of terms yield 1 an = 11 while True: yield an s = str(an) an += int(s[0]) + 10*int(s[-1]) print(list(islice(agen(), 55))) # Michael S. Branicky, Nov 17 2023
Formula
a(837058) = A367347(888508) = 40000026, so a(837058+i) = A367347(888508+i) for i >= 0. - Michael S. Branicky, Nov 17 2023
Comments