cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367350 Analog of A121805, but starting with 6.

This page as a plain text file.
%I A367350 #14 Nov 18 2023 11:54:18
%S A367350 6,73,104,145,196,258,341,354,397,471,485,540,545,601,617,693,730,737,
%T A367350 815,873,912,941,960,969,1060,1061,1072,1093,1124,1165,1216,1277,1348,
%U A367350 1429,1520,1521,1532,1553,1584,1625,1676,1737,1808,1889,1980,1981,1992,2014,2056,2118
%N A367350 Analog of A121805, but starting with 6.
%C A367350 Contains 209534289952018960 terms, the last term being a(209534289952018960) = 9999999999999999936.
%H A367350 Michael De Vlieger, <a href="/A367350/b367350.txt">Table of n, a(n) for n = 1..10000</a>
%t A367350 b = 10; m = b - 1; a[1] = 6; a[n_] := a[n] = For[r = Mod[a[n - 1], b]; y = 0, y <= m, y++, If[y == IntegerDigits[#, b][[1]], Return[#]] &[a[n - 1] + b r + y]]; Array[a, 45] (* _Michael De Vlieger_, Nov 18 2023, after _Jean-François Alcover_ at A121805 *)
%o A367350 (Python)
%o A367350 from itertools import count, islice
%o A367350 def agen(start=6): # generator of terms
%o A367350     an, y = start, 1
%o A367350     while y < 10:
%o A367350         yield an
%o A367350         an, y = an + 10*(an%10), 1
%o A367350         while y < 10:
%o A367350             if str(an+y)[0] == str(y):
%o A367350                 an += y
%o A367350                 break
%o A367350             y += 1
%o A367350 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Nov 18 2023
%Y A367350 Comma sequences in base 10, starting with 1, 2, 4, 5, 6, 7, 8, 9, 10 are A121805, A139284, A366492, A367337, A367350, A367351, A367352, A367353, A367354. Starting with 3 is trivial, and those starting with 11, 12, 13 are essentially duplicates.
%Y A367350 Cf. A330128, A330129.
%K A367350 nonn,base,fini
%O A367350 1,1
%A A367350 _N. J. A. Sloane_, Nov 17 2023