This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367363 #9 Nov 23 2023 13:03:27 %S A367363 1,112,1325,3863,10173,17490,26516,28144,32576,40216,41857,47604, %T A367363 48052,53305,53858,59717,61478,69347,74121,76297,86083,94477,102187, %U A367363 110898,120710,121722,123934,127346,131959,137872,145086,153701,153816,155431,158546,163162 %N A367363 First term is 1; thereafter, if u and v are consecutive terms, with decimal expansions u = bc...ef, v = hi...jk, then v-u has decimal expansion efhi, formed by concatenating the last two digits of u and the first two digits of v. If there is a choice for v, pick the smallest. %C A367363 A generalization of A121805. %H A367363 Michael S. Branicky, <a href="/A367363/b367363.txt">Table of n, a(n) for n = 1..10000</a> %e A367363 a(1) = 1, so ef = "01" = 1. So v-u will be a four-digit number (with a leading zero in this case), say v-u = 0xyz, with v = 1 + xyz. This suggests that we try x=1 and y=1, v = 1 + xyz = 1 + 11*, where * = 1+z. The smallest choice is z = 0, giving "efhi" = "0111" = 111, and a(2) = 1 + 111 = 112 works. %o A367363 (Python) %o A367363 from itertools import islice %o A367363 def agen(): # generator of terms %o A367363 an, y = 1, 1 %o A367363 while y: %o A367363 yield an %o A367363 an, y = an + 100*(an%100), 1 %o A367363 y = next((y for y in range(1, 100) if str(an+y)[:2] == str(y)), 0) %o A367363 an += y %o A367363 print(list(islice(agen(), 36))) # _Michael S. Branicky_, Nov 23 2023 %Y A367363 Cf. A121805. %K A367363 nonn,base %O A367363 1,2 %A A367363 _N. J. A. Sloane_, Nov 23 2023 %E A367363 More terms from _Michael S. Branicky_, Nov 23 2023