cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A330128 a(n) is the number of terms in the analog of A121805 but starting with n, or -1 if that sequence is infinite.

Original entry on oeis.org

2137453, 194697747222394, 2, 199900, 19706, 209534289952018960, 15, 198104936410, 19511030, 20573, 20572, 2137452, 20534, 19238, 2, 2089707, 20670629294, 1, 21482, 19278442756937613, 2074, 19278442756937612, 20571, 194697747222393, 193, 197062, 1, 197, 2061823
Offset: 1

Views

Author

Giovanni Resta, Dec 02 2019

Keywords

Comments

The final terms of the corresponding sequences are given in A330129.

Crossrefs

Cf. A330129 (corresponding last term), A121805, A139284, A366492.
For record high points see A367364 and A367365.

Programs

  • Mathematica
    nxt[x_] := Block[{p=1, n=x}, While[n >= 10, n = Floor[n/10]; p *= 10]; p (n + 1)]; a[n_] := Block[{nT=1, nX=n, w1, w2, w3, x, it, stp, oX}, stp = 100; w1 = w2 = w3 = 0; While[True, oX = nX; nT++; x = 10*Mod[oX, 10]; nX = SelectFirst[Range[9], IntegerDigits[oX + x + #][[1]] == # &, 0]; If[nX == 0, Break[], nX = nX + oX + x]; If[nT == stp, stp += 100; w1=w2; w2=w3; w3=nX; If[w3 + w1 == 2 w2 && Mod[w3 - w2, 100] == 0, it = Floor[(nxt[nX] - nX - 1)/(w3 - w2)]; nT += it*100; nX += (w3 - w2)*it; w3=nX; stp += it*100]]]; nT - 1]; Array[a, 30]
  • Python
    def nxt(x):
        p, n = 1, x
        while n >= 10:
            n //= 10
            p *= 10
        return p * (n + 1)
    def a(n):
        nT, nX, w1, w2, w3, stp  = 1, n, 0, 0, 0, 100
        while True:
            oX = nX
            nT += 1
            x = 10*(oX%10)
            nX = next((y for y in range(1, 10) if str(oX+x+y)[0] == str(y)), 0)
            if nX == 0: break
            else: nX += oX + x
            if nT == stp:
                stp += 100
                w1, w2, w3 = w2, w3, nX
                if w3 + w1 == 2*w2 and (w3 - w2)%100 == 0:
                    it = (nxt(nX) - nX - 1)//(w3 - w2)
                    nT += it*100
                    nX += (w3 - w2)*it
                    w3 = nX
                    stp += it*100
        return nT - 1
    print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Nov 18 2023 after Giovanni Resta

Extensions

Escape clause added to definition by N. J. A. Sloane, Nov 14 2023

A367364 Record high-points in A330128.

Original entry on oeis.org

2137453, 194697747222394, 209534289952018960, 2153441655319779164332, 195152998207833388640389, 192648330068920004741771823742285752
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2023

Keywords

Crossrefs

A367598 is a base-3 analog.

Extensions

a(6) from Michael S. Branicky, Nov 26 2023

A367601 a(n) is the number of terms in the analog of A121805 but starting with A037124(n), or -1 if that sequence is infinite.

Original entry on oeis.org

2137453, 194697747222394, 2, 199900, 19706, 209534289952018960, 15, 198104936410, 19511030, 20573, 19278442756937613, 207556412347088426, 2153441655319779164332, 1960210914, 204, 19, 195607586, 21, 19511029, 1922379655900, 15, 1979, 191782579276710577865, 1927
Offset: 1

Views

Author

Keywords

Comments

This is by definition a subsequence of A330128.

Crossrefs

For records see A367602 and A367603.

A367602 Records in A367601.

Original entry on oeis.org

2137453, 194697747222394, 209534289952018960, 2153441655319779164332, 195152998207833388640389, 192648330068920004741771823742285752, 1879472501974027932230497653831908067612145407102, 2071675282852490774827341955075117685752805692835677843166, 20548999112584138590755517725134777010151822745525893951682
Offset: 1

Views

Author

Michael S. Branicky, Dec 06 2023

Keywords

Comments

Is this the same as A367364? - R. J. Mathar, Dec 12 2023

Crossrefs

A367603 Indices of records in A367601.

Original entry on oeis.org

1, 2, 6, 40, 4000, 20000, 80000000000, 40000000000000000000000000000, 30000000000000000000000000000000, 3000000000000000000000000000000000000000, 6000000000000000000000000000000000000000
Offset: 1

Views

Author

Michael S. Branicky, Dec 06 2023

Keywords

Crossrefs

A367599 Indices of record high-points in A367356.

Original entry on oeis.org

1, 6, 7, 18, 162, 1458, 13122, 118098, 1062882, 9565938, 86093442
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2023

Keywords

Comments

This is a base-3 analog of A367365. The present sequence includes the terms 2*3, 2*3^2, 2*3^6, whereas A367365 includes 4*10 and 4*10^3.
Terms a(4)-a(11) are of the form 2*3^(2*i), i > 0. - Michael S. Branicky, Nov 26 2023

Crossrefs

Extensions

a(7)-a(11) from Michael S. Branicky, Nov 27 2023
Showing 1-6 of 6 results.