A367366 a(n) = smallest k such that the commas sequence (cf. A121805) with initial term k contains n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 20, 10, 2, 25, 26, 27, 28, 29, 30, 31, 32, 30, 21, 1, 3, 37, 38, 39, 40, 41, 42, 43, 40, 31, 20, 13, 4, 49, 50, 51, 52, 53, 54, 50, 41, 32, 10, 14, 60, 5, 62, 63, 64, 65, 60, 51, 42, 30, 70, 2, 15, 6, 74, 75
Offset: 1
Examples
All terms n in A121805 have a(n) = 1, all n in A139284 have a(n) = 2, all n in A366492 have a(n) = 4, and so on.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, The Comma Sequence: A Simple Sequence With Bizarre Properties, arXiv:2401.14346, Fibonacci Quarterly 62:3 (2024), 215-232.
- Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, The Comma Sequence: A Simple Sequence With Bizarre Properties, Local copy.
- N. J. A. Sloane, Eric Angelini's Comma Sequence, Experimental Math Seminar, Rutgers Univ., January 18, 2024, Youtube video; Slides
Programs
-
Python
def comma_predecessor(n): # A367614(n) y = int(str(n)[0]) x = (n-y)%10 k = n - y - 10*x kk = k + 10*x + y-1 return k if k > 0 and int(str(kk)[0]) != y-1 else -1 def a(n): an = n while (cp:=comma_predecessor(an)) > 0: an = cp return an print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Dec 18 2023
Comments