cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367370 a(k) is the number of different widths patterns in the symmetric representation of sigma for numbers having k odd divisors.

This page as a plain text file.
%I A367370 #16 Dec 31 2023 00:17:30
%S A367370 1,2,3,6,5,16,7,40
%N A367370 a(k) is the number of different widths patterns in the symmetric representation of sigma for numbers having k odd divisors.
%C A367370 The width pattern (A341969) of the symmetric representation of sigma for a number with k >= 1 odd divisors has length 2*k - 1.
%C A367370 a(p) = p for any prime number p is realized by the m+1 numbers 3^(p-1), ..., 2^m * 3^(p-1) which contain m+1-p duplicates, where m = floor(log_2(3^(p-1))). Each width pattern first increases to a level 1 <= i <= p and then alternates between i and i-1 up to the diagonal of the symmetric representation of sigma resulting in p distinct patterns.
%C A367370 For some numbers n = 2^m * q, q odd and not prime, that are the least instantiations of a width pattern their odd parts q may not be the least instantiations of a width pattern, examples are 78, 1014, 12246 and 171366 with 4, 6, 8 and 10 odd divisors, respectively (see row 2 of the table in A367377).
%C A367370 Conjecture: a(9) = 28.
%C A367370 The least number instantiating the 28th width pattern, 12345654345654321, is n = 43356672, found in a search up to 5*10^9.
%C A367370 Table of width pattern counts of the symmetric representation of sigma and of all possible symmetric patterns:
%C A367370 # odd divisors  1   2   3   4   5    6    7    8    9   10   11    12
%C A367370 pattern count   1   2   3   6   5   16    7   40   28? >=47  11 >=223
%C A367370 A001405         1   2   3   6  10   20   35   70  126  252  462   924
%C A367370 The 4 symmetric patterns 10123232101, 10123432101, 12101010121 and 12123432121 cannot be instantiated as width patterns of numbers with 6 odd divisors.
%C A367370 30 of the 70 possible symmetric patterns of numbers n = 2^m * q, m>=0 and q odd, with 8 odd divisors cannot be instantiated as width patterns of the symmetric representation of sigma(n) since their sequence of widths contradicts the order of the odd divisors d_i of n and of the numbers 2^(m+1) * d_i and the positions of their corresponding 1's in the rows of the triangle of widths in A249223.
%e A367370 In the irregular triangle below, row k lists the count and the first occurrences of successive instantiations of the distinct width patterns in the symmetric representation of sigma for numbers with k odd divisors.
%e A367370 # div |count|    first occurrence of distinct width patterns
%e A367370       |     |    1    2    3     4     5     6      7 .. 11 .. 16 .. 40
%e A367370 -----------------------------------------------------------------------
%e A367370 1     |  1  |    1                                        .     .     .
%e A367370 2     |  2  |    3    6                                   .     .     .
%e A367370 3     |  3  |    9   18   72                              .     .     .
%e A367370 4     |  6  |   15   21   30    60    78   120            .     .     .
%e A367370 5     |  5  |   81  162  648  1296  5184                  .     .     .
%e A367370 6     | 16  |   45   63   75    90   147   150    180    ...  27744   .
%e A367370 7     |  7  |  729 1458 5832 11664 46656 93312 373248     .           .
%e A367370 8     | 40  |  105  135  165   189   210   231    357    ...       203808
%e A367370 9     | 28? |  225  441  450   882   900  1225   1800    ...
%e A367370 10    | >=47|  405  567  810  1134  1377  1539   1620    ...
%e A367370 11    | 11  |59049                 ...               1934917632
%e A367370 The complete sequence of first occurrences of the 11 width patterns for numbers with 11 odd divisors is: 59049, 118098, 472392, 944784, 3779136, 7558272, 30233088, 120932352, 241864704, 967458816, 1934917632.
%e A367370 The column labeled '1' of least occurrences of a width pattern of length 2k-1 is sequence A038547: least number with exactly k odd divisors.
%t A367370 t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, Floor[(Sqrt[8n+1]-1)/2]]]
%t A367370 (* row n in triangle of A249223 *)
%t A367370 t262045[n_] := Join[t249223[n], Reverse[t249223[n]]] (* row n in triangle of A262045 *)
%t A367370 widthPattern[n_] := Map[First, Split[t262045[n]]]
%t A367370 nOddDivs[n_] := Length[Divisors[NestWhile[#/2&, n, EvenQ[#]&]]]
%t A367370 count[n_, k_] := Length[Union[Map[widthPattern, Select[Range[n], nOddDivs[#]==k&]]]]
%t A367370 (* count of distinct width patterns for numbers with k odd divisors in the range 1 .. n *)
%Y A367370 Cf. A235791, A237048, A237270, A237591, A237593, A249223, A250071, A262045, A318843, A341969, A342592, A342594, A342595, A342596, A367377.
%K A367370 nonn,more
%O A367370 1,2
%A A367370 _Hartmut F. W. Hoft_, Dec 05 2023