cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367372 Expansion of the e.g.f. (exp(x) / (4 - 3*exp(x)))^(1/2).

This page as a plain text file.
%I A367372 #14 Nov 15 2023 08:03:53
%S A367372 1,2,10,86,1042,16262,310450,7007366,182550322,5390680262,
%T A367372 177934787890,6492033136646,259439670455602,11270026085032262,
%U A367372 528753577418113330,26645797408814241926,1435417112274224920882,82316745016710520696262
%N A367372 Expansion of the e.g.f. (exp(x) / (4 - 3*exp(x)))^(1/2).
%F A367372 a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (4*j+2)) * Stirling2(n,k) = Sum_{k=0..n} (-1)^(n-k) * (2*k)! * Stirling2(n,k)/k!.
%F A367372 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (2*k/n - 4) * binomial(n,k) * a(n-k).
%F A367372 a(0) = 1; a(n) = 2*a(n-1) + 3*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
%o A367372 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 4*j+2)*stirling(n, k, 2));
%Y A367372 Cf. A136728, A201354, A367373.
%Y A367372 Cf. A001813, A354242.
%K A367372 nonn
%O A367372 0,2
%A A367372 _Seiichi Manyama_, Nov 15 2023