cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367373 Expansion of the e.g.f. (exp(x) / (4 - 3*exp(x)))^(3/4).

This page as a plain text file.
%I A367373 #8 Nov 15 2023 08:03:57
%S A367373 1,3,18,171,2223,36648,731763,17157591,461975868,14045606613,
%T A367373 475876343583,17777773950786,725954222357613,32168297036885103,
%U A367373 1537272547959690378,78808327981017731631,4314090689274124348083,251157836896565547250368
%N A367373 Expansion of the e.g.f. (exp(x) / (4 - 3*exp(x)))^(3/4).
%F A367373 a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (4*j+3)) * Stirling2(n,k).
%F A367373 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (k/n - 4) * binomial(n,k) * a(n-k).
%F A367373 a(0) = 1; a(n) = 3*a(n-1) + 3*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
%o A367373 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 2));
%Y A367373 Cf. A136728, A201354, A367372.
%K A367373 nonn
%O A367373 0,2
%A A367373 _Seiichi Manyama_, Nov 15 2023