cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367374 Expansion of the e.g.f. (exp(x) / (5 - 4*exp(x)))^(2/5).

This page as a plain text file.
%I A367374 #9 Nov 15 2023 08:04:05
%S A367374 1,2,12,128,1944,38264,924936,26507672,878565000,33058419032,
%T A367374 1392125985864,64864749910424,3313075222410504,184071465908101592,
%U A367374 11051901784679926728,713107430713993422872,49208366812318404125832,3616200105869781814285400
%N A367374 Expansion of the e.g.f. (exp(x) / (5 - 4*exp(x)))^(2/5).
%F A367374 a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (5*j+2)) * Stirling2(n,k).
%F A367374 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (3*k/n - 5) * binomial(n,k) * a(n-k).
%F A367374 a(0) = 1; a(n) = 2*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
%o A367374 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 5*j+2)*stirling(n, k, 2));
%Y A367374 Cf. A136729, A201365, A367375, A367376.
%Y A367374 Cf. A365568.
%K A367374 nonn
%O A367374 0,2
%A A367374 _Seiichi Manyama_, Nov 15 2023