cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367394 Number of integer partitions of n whose length is a semi-sum of the parts.

This page as a plain text file.
%I A367394 #11 Nov 20 2023 08:14:13
%S A367394 0,0,1,0,1,1,3,3,6,7,14,15,25,30,46,54,80,97,139,169,229,282,382,461,
%T A367394 607,746,962,1173,1499,1817,2302,2787,3467,4201,5216,6260,7702,9261,
%U A367394 11294,13524,16418,19572,23658,28141,33756,40081,47949,56662,67493,79639
%N A367394 Number of integer partitions of n whose length is a semi-sum of the parts.
%C A367394 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
%e A367394 For the partition y = (3,3,2,1) we have 4 = 3 + 1, so y is counted under a(9).
%e A367394 The a(2) = 1 through a(10) = 14 partitions:
%e A367394   (11)  .  (211)  (221)  (321)   (421)   (521)    (621)    (721)
%e A367394                          (2211)  (2221)  (2222)   (3222)   (3322)
%e A367394                          (3111)  (3211)  (3221)   (3321)   (3331)
%e A367394                                          (3311)   (4221)   (4222)
%e A367394                                          (32111)  (4311)   (4321)
%e A367394                                          (41111)  (32211)  (5221)
%e A367394                                                   (42111)  (5311)
%e A367394                                                            (32221)
%e A367394                                                            (33211)
%e A367394                                                            (42211)
%e A367394                                                            (43111)
%e A367394                                                            (331111)
%e A367394                                                            (421111)
%e A367394                                                            (511111)
%t A367394 Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,10}]
%Y A367394 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
%Y A367394              sum-full  sum-free  comb-full comb-free semi-full semi-free
%Y A367394             -----------------------------------------------------------
%Y A367394 partitions:  A367212   A367213   A367218   A367219   A367394*  A367398
%Y A367394 strict:      A367214   A367215   A367220   A367221   A367395   A367399
%Y A367394 subsets:     A367216   A367217   A367222   A367223   A367396   A367400
%Y A367394 ranks:       A367224   A367225   A367226   A367227   A367397   A367401
%Y A367394 A000041 counts partitions, strict A000009.
%Y A367394 A002865 counts partitions whose length is a part, complement A229816.
%Y A367394 A236912 counts partitions containing no semi-sum, ranks A364461.
%Y A367394 A237113 counts partitions containing a semi-sum, ranks A364462.
%Y A367394 A237668 counts sum-full partitions, sum-free A237667.
%Y A367394 A366738 counts semi-sums of partitions, strict A366741.
%Y A367394 Triangles:
%Y A367394 A008284 counts partitions by length, strict A008289.
%Y A367394 A365543 counts partitions with a subset-sum k, strict A365661.
%Y A367394 A367404 counts partitions with a semi-sum k, strict A367405.
%Y A367394 Cf. A000700, A088809, A093971, A126796, A238628, A304792, A363225, A364534, A365541, A365924, A367402.
%K A367394 nonn
%O A367394 0,7
%A A367394 _Gus Wiseman_, Nov 19 2023