This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367395 #7 Nov 20 2023 08:19:04 %S A367395 0,0,0,0,0,0,1,1,1,1,2,2,2,3,3,5,5,7,8,11,13,17,19,25,28,35,41,49,57, %T A367395 68,78,92,107,124,143,166,192,220,254,291,335,382,439,499,572,649,741, %U A367395 840,956,1080,1226,1383,1566,1762,1988,2235,2515,2822,3166,3547 %N A367395 Number of strict integer partitions of n whose length is the sum of two distinct parts. %e A367395 The strict partition (5,3,2,1) has 4 = 3 + 1 so is counted under a(11). %e A367395 The a(6) = 1 through a(17) = 7 strict partitions (A..E = 10..14): %e A367395 321 421 521 621 721 821 921 A21 B21 C21 D21 E21 %e A367395 4321 5321 6321 5431 6431 6531 7531 7631 %e A367395 7321 8321 7431 8431 8531 %e A367395 9321 A321 9431 %e A367395 54321 64321 B321 %e A367395 65321 %e A367395 74321 %t A367395 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,30}] %Y A367395 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred. %Y A367395 sum-full sum-free comb-full comb-free semi-full semi-free %Y A367395 ----------------------------------------------------------- %Y A367395 partitions: A367212 A367213 A367218 A367219 A367394 A367398 %Y A367395 strict: A367214 A367215 A367220 A367221 A367395* A367399 %Y A367395 subsets: A367216 A367217 A367222 A367223 A367396 A367400 %Y A367395 ranks: A367224 A367225 A367226 A367227 A367397 A367401 %Y A367395 A000041 counts partitions, strict A000009. %Y A367395 A002865 counts partitions whose length is a part, complement A229816. %Y A367395 A088809/A093971 count twofold sum-full subsets. %Y A367395 A236912 counts partitions containing no semi-sum, ranks A364461. %Y A367395 A237113 counts partitions containing a semi-sum, ranks A364462. %Y A367395 A237668 counts sum-full partitions, sum-free A237667. %Y A367395 A366738 counts semi-sums of partitions, strict A366741. %Y A367395 Triangles: %Y A367395 A008284 counts partitions by length, strict A008289. %Y A367395 A365541 counts subsets with a semi-sum k. %Y A367395 A367404 counts partitions with a semi-sum k, strict A367405. %Y A367395 Cf. A000700, A238628, A363225, A364272, A364534, A365661, A365925, A367410, A367411. %K A367395 nonn %O A367395 0,11 %A A367395 _Gus Wiseman_, Nov 19 2023