This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367396 #28 Dec 30 2023 17:00:53 %S A367396 0,0,0,1,3,7,17,40,90,199,435,939,2007,4258,8976,18817,39263,81595, %T A367396 168969,348820,718134,1474863,3022407,6181687,12621135,25727686, %U A367396 52369508,106460521,216162987,438431215,888359841,1798371648,3637518354,7351824439,14848255803 %N A367396 Number of subsets of {1..n} whose cardinality is the sum of two distinct elements. %F A367396 Conjectures from _Chai Wah Wu_, Nov 21 2023: (Start) %F A367396 a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - 5*a(n-4) + 2*a(n-5) for n > 4. %F A367396 G.f.: x^3*(x - 1)/((2*x - 1)*(x^4 - 2*x^3 + x^2 - 2*x + 1)). (End) %e A367396 The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is not counted under a(8). %e A367396 The a(0) = 0 through a(6) = 17 subsets: %e A367396 . . . {1,2,3} {1,2,3} {1,2,3} {1,2,3} %e A367396 {1,2,4} {1,2,4} {1,2,4} %e A367396 {1,2,3,4} {1,2,5} {1,2,5} %e A367396 {1,2,3,4} {1,2,6} %e A367396 {1,2,3,5} {1,2,3,4} %e A367396 {1,3,4,5} {1,2,3,5} %e A367396 {1,2,3,4,5} {1,2,3,6} %e A367396 {1,3,4,5} %e A367396 {1,3,4,6} %e A367396 {1,3,5,6} %e A367396 {1,2,3,4,5} %e A367396 {1,2,3,4,6} %e A367396 {1,2,3,5,6} %e A367396 {1,2,4,5,6} %e A367396 {1,3,4,5,6} %e A367396 {2,3,4,5,6} %e A367396 {1,2,3,4,5,6} %t A367396 Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}] %o A367396 (Python) %o A367396 from itertools import combinations %o A367396 def A367396(n): return sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any({a,k-a}<=w for a in range(1,k+1>>1))) # _Chai Wah Wu_, Nov 21 2023 %Y A367396 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred. %Y A367396 sum-full sum-free comb-full comb-free semi-full semi-free %Y A367396 ----------------------------------------------------------- %Y A367396 partitions: A367212 A367213 A367218 A367219 A367394 A367398 %Y A367396 strict: A367214 A367215 A367220 A367221 A367395 A367399 %Y A367396 subsets: A367216 A367217 A367222 A367223 A367396* A367400 %Y A367396 ranks: A367224 A367225 A367226 A367227 A367397 A367401 %Y A367396 A002865 counts partitions whose length is a part, complement A229816. %Y A367396 A364534 counts sum-full subsets. %Y A367396 A088809 and A093971 count subsets containing semi-sums. %Y A367396 A366738 counts semi-sums of partitions, strict A366741. %Y A367396 Triangles: %Y A367396 A365381 counts subsets with a subset summing to k, complement A366320. %Y A367396 A365541 counts subsets with a semi-sum k. %Y A367396 A367404 counts partitions with a semi-sum k, strict A367405. %Y A367396 Cf. A236912, A237113, A237667, A237668, A304792, A363225, A364272, A365658, A366131, A366740. %K A367396 nonn %O A367396 0,5 %A A367396 _Gus Wiseman_, Nov 21 2023 %E A367396 a(18)-a(33) from _Chai Wah Wu_, Nov 21 2023 %E A367396 a(34) from _Paul Muljadi_, Nov 24 2023