This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367397 #7 Nov 21 2023 08:22:02 %S A367397 4,12,18,30,36,40,42,54,60,66,78,81,90,100,102,112,114,120,126,135, %T A367397 138,140,150,168,174,180,186,189,198,210,220,222,225,234,246,250,252, %U A367397 258,260,270,280,282,297,300,306,315,318,330,336,340,342,350,351,352,354 %N A367397 Numbers m such that bigomega(m) is the sum of prime indices of some semiprime divisor of m. %C A367397 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367397 These are the Heinz numbers of the partitions counted by A367394. %t A367397 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A367397 Select[Range[100],MemberQ[Total/@Subsets[prix[#],{2}],PrimeOmega[#]]&] %Y A367397 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred. %Y A367397 sum-full sum-free comb-full comb-free semi-full semi-free %Y A367397 ----------------------------------------------------------- %Y A367397 partitions: A367212 A367213 A367218 A367219 A367394 A367398 %Y A367397 strict: A367214 A367215 A367220 A367221 A367395 A367399 %Y A367397 subsets: A367216 A367217 A367222 A367223 A367396 A367400 %Y A367397 ranks: A367224 A367225 A367226 A367227 A367397* A367401 %Y A367397 A325761 ranks partitions whose length is a part, counted by A002865. %Y A367397 A088809 and A093971 count subsets containing semi-sums. %Y A367397 A236912 counts partitions with no semi-sum of the parts, ranks A364461. %Y A367397 A237113 counts partitions with a semi-sum of the parts, ranks A364462. %Y A367397 A304792 counts subset-sums of partitions, strict A365925. %Y A367397 A366738 counts semi-sums of partitions, strict A366741. %Y A367397 Triangles: %Y A367397 A365381 counts subsets with a subset summing to k, complement A366320. %Y A367397 A365541 counts subsets with a semi-sum k. %Y A367397 A367404 counts partitions with a semi-sum k, strict A367405. %Y A367397 Cf. A000700, A229816, A237667, A237668, A238628, A363225, A364272, A365543, A365658, A365918, A366740. %K A367397 nonn %O A367397 1,1 %A A367397 _Gus Wiseman_, Nov 21 2023