This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367398 #13 Mar 17 2024 14:03:49 %S A367398 1,1,1,3,4,6,8,12,16,23,28,41,52,71,89,122,151,200,246,321,398,510, %T A367398 620,794,968,1212,1474,1837,2219,2748,3302,4055,4882,5942,7094,8623, %U A367398 10275,12376,14721,17661,20920,25011,29516,35120,41419,49053,57609,68092,79780 %N A367398 Number of integer partitions of n whose length is not a semi-sum of the parts. %C A367398 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A367398 For the partition y = (4,3,1) we have semi-sums {4,5,7}, which do not include 3 (the length of y), so y is counted under a(8). %e A367398 The a(1) = 1 through a(8) = 16 partitions: %e A367398 (1) (2) (3) (4) (5) (6) (7) (8) %e A367398 (21) (22) (32) (33) (43) (44) %e A367398 (111) (31) (41) (42) (52) (53) %e A367398 (1111) (311) (51) (61) (62) %e A367398 (2111) (222) (322) (71) %e A367398 (11111) (411) (331) (332) %e A367398 (21111) (511) (422) %e A367398 (111111) (4111) (431) %e A367398 (22111) (611) %e A367398 (31111) (4211) %e A367398 (211111) (5111) %e A367398 (1111111) (22211) %e A367398 (221111) %e A367398 (311111) %e A367398 (2111111) %e A367398 (11111111) %t A367398 Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}] %Y A367398 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred. %Y A367398 sum-full sum-free comb-full comb-free semi-full semi-free %Y A367398 ----------------------------------------------------------- %Y A367398 partitions: A367212 A367213 A367218 A367219 A367394 A367398* %Y A367398 strict: A367214 A367215 A367220 A367221 A367395 A367399 %Y A367398 subsets: A367216 A367217 A367222 A367223 A367396 A367400 %Y A367398 ranks: A367224 A367225 A367226 A367227 A367397 A367401 %Y A367398 A000041 counts partitions, strict A000009. %Y A367398 A002865 counts partitions whose length is a part, complement A229816. %Y A367398 A236912 counts partitions containing no semi-sum, ranks A364461. %Y A367398 A237113 counts partitions containing a semi-sum, ranks A364462. %Y A367398 A237667 counts sum-free partitions, sum-full A237668. %Y A367398 A366738 counts semi-sums of partitions, strict A366741. %Y A367398 A367402 counts partitions with covering semi-sums, complement A367403. %Y A367398 Triangles: %Y A367398 A008284 counts partitions by length, strict A008289. %Y A367398 A365541 counts subsets with a semi-sum k. %Y A367398 A367404 counts partitions with a semi-sum k, strict A367405. %Y A367398 Cf. A000700, A126796, A304792, A363225, A364272, A365543. %K A367398 nonn %O A367398 0,4 %A A367398 _Gus Wiseman_, Nov 19 2023