This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367400 #10 Nov 21 2023 16:42:49 %S A367400 1,2,4,7,13,25,47,88,166,313,589,1109,2089,3934,7408,13951,26273, %T A367400 49477,93175,175468,330442,622289,1171897,2206921,4156081,7826746, %U A367400 14739356,27757207,52272469,98439697,185381983,349112000,657448942,1238110153 %N A367400 Number of subsets of {1..n} whose cardinality is not the sum of two distinct elements. %F A367400 Conjectures from _Chai Wah Wu_, Nov 21 2023: (Start) %F A367400 a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) for n > 3. %F A367400 G.f.: (-x^3 + x^2 + 1)/(x^4 - 2*x^3 + x^2 - 2*x + 1). (End) %e A367400 The set s = {1,2,3,6,7,8} has the following sums of pairs of distinct elements: {3,4,5,7,8,9,10,11,13,14,15}. This does not include 6, so s is counted under a(8). %e A367400 The a(0) = 1 through a(4) = 13 subsets: %e A367400 {} {} {} {} {} %e A367400 {1} {1} {1} {1} %e A367400 {2} {2} {2} %e A367400 {1,2} {3} {3} %e A367400 {1,2} {4} %e A367400 {1,3} {1,2} %e A367400 {2,3} {1,3} %e A367400 {1,4} %e A367400 {2,3} %e A367400 {2,4} %e A367400 {3,4} %e A367400 {1,3,4} %e A367400 {2,3,4} %t A367400 Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#, {2}], Length[#]]&]], {n,0,10}] %o A367400 (Python) %o A367400 from itertools import combinations %o A367400 def A367400(n): return (n*(n+1)>>1)+1+sum(1 for k in range(3,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if not any({a,k-a}<=w for a in range(1,k+1>>1))) # _Chai Wah Wu_, Nov 21 2023 %Y A367400 The version containing n appears to be A112575. %Y A367400 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred. %Y A367400 sum-full sum-free comb-full comb-free semi-full semi-free %Y A367400 ----------------------------------------------------------- %Y A367400 partitions: A367212 A367213 A367218 A367219 A367394 A367398 %Y A367400 strict: A367214 A367215 A367220 A367221 A367395 A367399 %Y A367400 subsets: A367216 A367217 A367222 A367223 A367396 A367400* %Y A367400 ranks: A367224 A367225 A367226 A367227 A367397 A367401 %Y A367400 A002865 counts partitions whose length is a part, complement A229816. %Y A367400 A364534 counts sum-full subsets. %Y A367400 A088809 and A093971 count subsets containing semi-sums. %Y A367400 A236912 counts partitions with no semi-sum of the parts, ranks A364461. %Y A367400 A366738 counts semi-sums of partitions, strict A366741. %Y A367400 Triangles: %Y A367400 A365381 counts subsets with a subset summing to k, complement A366320. %Y A367400 A365541 counts subsets with a semi-sum k. %Y A367400 A367404 counts partitions with a semi-sum k, strict A367405. %Y A367400 Cf. A237113, A237667, A238628, A304792, A363225, A364272, A365543, A365658, A365918, A366131, A366740. %K A367400 nonn,more %O A367400 0,2 %A A367400 _Gus Wiseman_, Nov 21 2023 %E A367400 a(18)-a(33) from _Chai Wah Wu_, Nov 21 2023