This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367401 #6 Nov 21 2023 10:38:34 %S A367401 1,2,3,5,6,7,8,9,10,11,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28, %T A367401 29,31,32,33,34,35,37,38,39,41,43,44,45,46,47,48,49,50,51,52,53,55,56, %U A367401 57,58,59,61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,77 %N A367401 Numbers m such that bigomega(m) is not the sum of prime indices of any semiprime divisor of m. %C A367401 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367401 These are the Heinz numbers of the partitions counted by A367398. %e A367401 60 has semiprime divisor 10 with prime indices {1,3} summing to 4 = bigomega(60), so 60 is not in the sequence. %e A367401 The terms together with their prime indices begin: %e A367401 1: {} %e A367401 2: {1} %e A367401 3: {2} %e A367401 5: {3} %e A367401 6: {1,2} %e A367401 7: {4} %e A367401 8: {1,1,1} %e A367401 9: {2,2} %e A367401 10: {1,3} %e A367401 11: {5} %e A367401 13: {6} %e A367401 14: {1,4} %e A367401 15: {2,3} %e A367401 16: {1,1,1,1} %e A367401 17: {7} %e A367401 19: {8} %e A367401 20: {1,1,3} %t A367401 prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A367401 Select[Range[100], FreeQ[Total/@Subsets[prix[#],{2}], PrimeOmega[#]]&] %Y A367401 The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred. %Y A367401 sum-full sum-free comb-full comb-free semi-full semi-free %Y A367401 ----------------------------------------------------------- %Y A367401 partitions: A367212 A367213 A367218 A367219 A367394 A367398 %Y A367401 strict: A367214 A367215 A367220 A367221 A367395 A367399 %Y A367401 subsets: A367216 A367217 A367222 A367223 A367396 A367400 %Y A367401 ranks: A367224 A367225 A367226 A367227 A367397 A367401* %Y A367401 A002865 counts partitions w/ length, complement A229816, ranks A325761. %Y A367401 A088809 and A093971 count subsets containing semi-sums. %Y A367401 A236912 counts partitions with no semi-sum of the parts, ranks A364461. %Y A367401 A237113 counts partitions with a semi-sum of the parts, ranks A364462. %Y A367401 A366738 counts semi-sums of partitions, strict A366741. %Y A367401 Triangles: %Y A367401 A365381 counts subsets with a subset summing to k, complement A366320. %Y A367401 A365541 counts subsets with a semi-sum k. %Y A367401 A367404 counts partitions with a semi-sum k, strict A367405. %Y A367401 Cf. A000700, A237667, A238628, A304792, A363225, A364272, A365543, A365658, A365918, A366740. %K A367401 nonn %O A367401 1,2 %A A367401 _Gus Wiseman_, Nov 21 2023