This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367402 #8 Nov 18 2023 18:18:53 %S A367402 1,1,2,3,5,6,9,10,13,17,20,26,31,38,44,58,64,81,95,116,137,166,192, %T A367402 233,278,330,385,459,542,636,759,879,1038,1211,1418,1656,1942,2242, %U A367402 2618,3029,3535,4060,4735,5429,6299,7231,8346,9556,11031,12593,14482,16525 %N A367402 Number of integer partitions of n whose semi-sums cover an interval of positive integers. %C A367402 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A367402 The partition y = (3,2,1,1) has semi-sums {2,3,4,5}, which is an interval, so y is counted under a(7). %e A367402 The a(1) = 1 through a(8) = 13 partitions: %e A367402 (1) (2) (3) (4) (5) (6) (7) (8) %e A367402 (11) (21) (22) (32) (33) (43) (44) %e A367402 (111) (31) (41) (42) (52) (53) %e A367402 (211) (221) (51) (61) (62) %e A367402 (1111) (2111) (222) (322) (71) %e A367402 (11111) (321) (2221) (332) %e A367402 (2211) (3211) (2222) %e A367402 (21111) (22111) (3221) %e A367402 (111111) (211111) (22211) %e A367402 (1111111) (32111) %e A367402 (221111) %e A367402 (2111111) %e A367402 (11111111) %t A367402 Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]==Union[d])&]], {n,0,15}] %Y A367402 For parts instead of sums we have A034296, ranks A073491. %Y A367402 For all subset-sums we have A126796, ranks A325781, strict A188431. %Y A367402 The complement for parts instead of sums is A239955, ranks A073492. %Y A367402 The complement for all sub-sums is A365924, ranks A365830, strict A365831. %Y A367402 The complement is counted by A367403. %Y A367402 The strict case is A367410, complement A367411. %Y A367402 A000009 counts partitions covering an initial interval, ranks A055932. %Y A367402 A086971 counts semi-sums of prime indices. %Y A367402 A261036 counts complete partitions by maximum. %Y A367402 A276024 counts positive subset-sums of partitions, strict A284640. %Y A367402 Cf. A000041, A002033, A046663, A108917, A264401, A304792, A365543, A365661, A365918, A365921. %K A367402 nonn %O A367402 0,3 %A A367402 _Gus Wiseman_, Nov 17 2023