This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367403 #6 Nov 18 2023 18:18:46 %S A367403 0,0,0,0,0,1,2,5,9,13,22,30,46,63,91,118,167,216,290,374,490,626,810, %T A367403 1022,1297,1628,2051,2551,3176,3929,4845,5963,7311,8932,10892,13227, %U A367403 16035,19395,23397,28156,33803,40523,48439,57832,68876,81903,97212,115198 %N A367403 Number of integer partitions of n whose semi-sums do not cover an interval of positive integers. %C A367403 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A367403 The a(0) = 0 through a(9) = 13 partitions: %e A367403 . . . . . (311) (411) (331) (422) (441) %e A367403 (3111) (421) (431) (522) %e A367403 (511) (521) (531) %e A367403 (4111) (611) (621) %e A367403 (31111) (3311) (711) %e A367403 (4211) (4311) %e A367403 (5111) (5211) %e A367403 (41111) (6111) %e A367403 (311111) (33111) %e A367403 (42111) %e A367403 (51111) %e A367403 (411111) %e A367403 (3111111) %t A367403 Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,15}] %Y A367403 The complement for parts instead of sums is A034296, ranks A073491. %Y A367403 The complement for all sub-sums is A126796, ranks A325781, strict A188431. %Y A367403 For parts instead of sums we have A239955, ranks A073492. %Y A367403 For all subset-sums we have A365924, ranks A365830, strict A365831. %Y A367403 The complement is counted by A367402. %Y A367403 The strict case is A367411, complement A367410. %Y A367403 A000009 counts partitions covering an initial interval, ranks A055932. %Y A367403 A086971 counts semi-sums of prime indices. %Y A367403 A261036 counts complete partitions by maximum. %Y A367403 A276024 counts positive subset-sums of partitions, strict A284640. %Y A367403 Cf. A000041, A002033, A046663, A108917, A264401, A304792, A365543, A365658. %K A367403 nonn %O A367403 0,7 %A A367403 _Gus Wiseman_, Nov 17 2023