cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367404 Triangle read by rows where T(n,k) is the number of integer partitions of n with a semi-sum k.

This page as a plain text file.
%I A367404 #6 Nov 18 2023 18:18:34
%S A367404 1,1,1,2,1,2,3,2,2,2,5,3,4,2,3,7,5,6,4,3,3,11,7,9,6,6,3,4,15,11,13,10,
%T A367404 9,6,4,4,22,15,20,13,15,9,8,4,5,30,22,27,21,21,15,12,8,5,5,42,30,39,
%U A367404 28,30,21,20,12,10,5,6,56,42,53,41,42,33,28,20,15,10,6,6
%N A367404 Triangle read by rows where T(n,k) is the number of integer partitions of n with a semi-sum k.
%C A367404 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
%e A367404 The partition y = (3,2,1,1) has semi-sum 3 = 2+1, but no semi-sum 6, so y is counted under T(7,3) but not under T(7,6).
%e A367404 Triangle begins:
%e A367404    1
%e A367404    1   1
%e A367404    2   1   2
%e A367404    3   2   2   2
%e A367404    5   3   4   2   3
%e A367404    7   5   6   4   3   3
%e A367404   11   7   9   6   6   3   4
%e A367404   15  11  13  10   9   6   4   4
%e A367404   22  15  20  13  15   9   8   4   5
%e A367404   30  22  27  21  21  15  12   8   5   5
%e A367404   42  30  39  28  30  21  20  12  10   5   6
%e A367404   56  42  53  41  42  33  28  20  15  10   6   6
%e A367404   77  56  73  55  60  42  44  28  25  15  12   6   7
%e A367404 Row n = 7 counts the following partitions:
%e A367404   (511)      (421)     (331)    (421)   (511)  (61)
%e A367404   (4111)     (3211)    (322)    (4111)  (421)  (52)
%e A367404   (3211)     (2221)    (3211)   (322)   (331)  (43)
%e A367404   (31111)    (22111)   (31111)  (3211)
%e A367404   (22111)    (211111)  (2221)
%e A367404   (211111)             (22111)
%e A367404   (1111111)
%t A367404 Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#, {2}],k]&]], {n,2,10}, {k,2,n}]
%Y A367404 Column k = 0 is A000041.
%Y A367404 Column n = k is A004526.
%Y A367404 The complement for all submultisets is A046663, strict A365663.
%Y A367404 For subsets instead of partitions we have A365541, non-binary A365381.
%Y A367404 The non-binary version is A365543, strict A365661.
%Y A367404 Row sums are A366738.
%Y A367404 The strict case is A367405.
%Y A367404 Cf. A122768, A108917, A299701, A304792, A364272, A364911, A365658.
%K A367404 nonn,tabl
%O A367404 2,4
%A A367404 _Gus Wiseman_, Nov 17 2023