cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367405 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with two distinct parts summing to k.

This page as a plain text file.
%I A367405 #6 Nov 19 2023 10:34:28
%S A367405 1,0,1,0,0,2,1,1,1,2,1,0,1,1,3,1,1,1,1,2,3,1,1,1,2,2,2,4,2,2,3,2,3,2,
%T A367405 3,4,2,2,3,2,3,3,3,3,5,3,2,4,3,4,4,5,3,4,5,3,3,5,4,4,5,5,5,4,4,6,4,3,
%U A367405 6,5,6,5,7,5,7,4,5,6,5,5,7,7,8,7,8,8,7,7,5,5,7
%N A367405 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with two distinct parts summing to k.
%e A367405 Triangle begins:
%e A367405   1
%e A367405   0  1
%e A367405   0  0  2
%e A367405   1  1  1  2
%e A367405   1  0  1  1  3
%e A367405   1  1  1  1  2  3
%e A367405   1  1  1  2  2  2  4
%e A367405   2  2  3  2  3  2  3  4
%e A367405   2  2  3  2  3  3  3  3  5
%e A367405   3  2  4  3  4  4  5  3  4  5
%e A367405   3  3  5  4  4  5  5  5  4  4  6
%e A367405   4  3  6  5  6  5  7  5  7  4  5  6
%e A367405   5  5  7  7  8  7  8  8  7  7  5  5  7
%e A367405   6  5  9  8 10  7 10  9 10  7  9  5  6  7
%e A367405   7  7 10 10 12 11 11 11 12 10  9  9  6  6  8
%e A367405   9  7 13 11 15 12 13 13 15 13 13  9 11  6  7  8
%e A367405 Row n = 9 counts the following strict partitions:
%e A367405   (6,2,1)  (5,3,1)  (4,3,2)  (5,3,1)  (6,2,1)  (6,2,1)  (8,1)
%e A367405                              (4,3,2)  (4,3,2)  (5,3,1)  (7,2)
%e A367405                                                         (6,3)
%e A367405                                                         (5,4)
%e A367405 Row n = 13 counts the following strict partitions (A=10, B=11, C=12):
%e A367405   A21   931   841   751   652   751   841   931   A21  A21  C1
%e A367405   7321  7321  832   742   643   7321  742   832   832  931  B2
%e A367405   6421  5431  7321  6421  6421  652   7321  7321  742  841  A3
%e A367405               6421  5431  5431  6421  643   643   652  751  94
%e A367405               5431              5431  5431  6421            85
%e A367405                                                             76
%t A367405 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], k]&]], {n,3,10}, {k,3,n}]
%Y A367405 Column n = k is A004526.
%Y A367405 Column k = 3 is A025148.
%Y A367405 For subsets instead of partitions we have A365541, non-binary A365381.
%Y A367405 The non-binary version is A365661, non-strict A365543.
%Y A367405 The non-binary complement is A365663, non-strict A046663.
%Y A367405 Row sums are A366741, non-strict A366738.
%Y A367405 The non-strict version is A367404.
%Y A367405 Cf. A000041, A088809, A093971, A122768, A108917, A284640, A304792, A364272, A364911, A365658.
%K A367405 nonn,tabl
%O A367405 3,6
%A A367405 _Gus Wiseman_, Nov 18 2023