This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367405 #6 Nov 19 2023 10:34:28 %S A367405 1,0,1,0,0,2,1,1,1,2,1,0,1,1,3,1,1,1,1,2,3,1,1,1,2,2,2,4,2,2,3,2,3,2, %T A367405 3,4,2,2,3,2,3,3,3,3,5,3,2,4,3,4,4,5,3,4,5,3,3,5,4,4,5,5,5,4,4,6,4,3, %U A367405 6,5,6,5,7,5,7,4,5,6,5,5,7,7,8,7,8,8,7,7,5,5,7 %N A367405 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with two distinct parts summing to k. %e A367405 Triangle begins: %e A367405 1 %e A367405 0 1 %e A367405 0 0 2 %e A367405 1 1 1 2 %e A367405 1 0 1 1 3 %e A367405 1 1 1 1 2 3 %e A367405 1 1 1 2 2 2 4 %e A367405 2 2 3 2 3 2 3 4 %e A367405 2 2 3 2 3 3 3 3 5 %e A367405 3 2 4 3 4 4 5 3 4 5 %e A367405 3 3 5 4 4 5 5 5 4 4 6 %e A367405 4 3 6 5 6 5 7 5 7 4 5 6 %e A367405 5 5 7 7 8 7 8 8 7 7 5 5 7 %e A367405 6 5 9 8 10 7 10 9 10 7 9 5 6 7 %e A367405 7 7 10 10 12 11 11 11 12 10 9 9 6 6 8 %e A367405 9 7 13 11 15 12 13 13 15 13 13 9 11 6 7 8 %e A367405 Row n = 9 counts the following strict partitions: %e A367405 (6,2,1) (5,3,1) (4,3,2) (5,3,1) (6,2,1) (6,2,1) (8,1) %e A367405 (4,3,2) (4,3,2) (5,3,1) (7,2) %e A367405 (6,3) %e A367405 (5,4) %e A367405 Row n = 13 counts the following strict partitions (A=10, B=11, C=12): %e A367405 A21 931 841 751 652 751 841 931 A21 A21 C1 %e A367405 7321 7321 832 742 643 7321 742 832 832 931 B2 %e A367405 6421 5431 7321 6421 6421 652 7321 7321 742 841 A3 %e A367405 6421 5431 5431 6421 643 643 652 751 94 %e A367405 5431 5431 5431 6421 85 %e A367405 76 %t A367405 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#,{2}], k]&]], {n,3,10}, {k,3,n}] %Y A367405 Column n = k is A004526. %Y A367405 Column k = 3 is A025148. %Y A367405 For subsets instead of partitions we have A365541, non-binary A365381. %Y A367405 The non-binary version is A365661, non-strict A365543. %Y A367405 The non-binary complement is A365663, non-strict A046663. %Y A367405 Row sums are A366741, non-strict A366738. %Y A367405 The non-strict version is A367404. %Y A367405 Cf. A000041, A088809, A093971, A122768, A108917, A284640, A304792, A364272, A364911, A365658. %K A367405 nonn,tabl %O A367405 3,6 %A A367405 _Gus Wiseman_, Nov 18 2023