cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367406 The exponentially odd numbers (A268335) multiplied by their squarefree kernels (A007947).

This page as a plain text file.
%I A367406 #18 Nov 30 2023 02:52:44
%S A367406 1,4,9,25,36,49,16,100,121,169,196,225,289,361,441,484,529,144,676,81,
%T A367406 841,900,961,64,1089,1156,1225,1369,1444,1521,400,1681,1764,1849,2116,
%U A367406 2209,2601,2809,324,3025,784,3249,3364,3481,3721,3844,4225,4356,4489,4761
%N A367406 The exponentially odd numbers (A268335) multiplied by their squarefree kernels (A007947).
%C A367406 Analogous to A355038, with the exponentially odd numbers instead of the square numbers (A000290).
%C A367406 This sequence is a permutation of the square numbers.
%H A367406 Amiram Eldar, <a href="/A367406/b367406.txt">Table of n, a(n) for n = 1..10000</a>
%F A367406 a(n) = A064549(A268335(n)).
%F A367406 a(n) = A268335(n)*A367417(n).
%F A367406 a(n) = A367407(n)^2.
%F A367406 a(n) = A268335(n)^2/A367418(n).
%F A367406 Sum_{k=1..n} a(k) = c * n^3 / 3, where c = (Pi^2/(15*d^3)) * Product_{p prime} (1 - 1/(p^3*(p+1))) = 1.78385074227198915372..., and d = A065463 is the asymptotic density of the exponentially odd numbers.
%F A367406 a(n) = A053143(A268335(n)). - _Amiram Eldar_, Nov 30 2023
%t A367406 s[n_] := n * Times @@ FactorInteger[n][[;;, 1]]; s /@ Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
%o A367406 (PARI) b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^(f[i,2]+1), 0));}
%o A367406 lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", ")));}
%Y A367406 Cf. A000290, A007947, A053143, A064549, A065463, A268335, A355038, A367407, A367417, A367418.
%K A367406 nonn,easy
%O A367406 1,2
%A A367406 _Amiram Eldar_, Nov 17 2023