This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367410 #9 Nov 18 2023 18:08:03 %S A367410 1,1,1,2,2,3,4,4,4,6,6,7,7,8,8,11,9,11,11,12,12,15,14,15,16,16,16,19, %T A367410 18,19,22,21,21,24,22,25,26,26,26,30,28,29,32,31,32,37,35,36,38,39,39, %U A367410 43,42,43,47,46,49,51,52,51,58 %N A367410 Number of strict integer partitions of n whose semi-sums cover an interval of positive integers. %C A367410 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A367410 The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is not counted under a(7). %e A367410 The a(1) = 1 through a(9) = 6 partitions: %e A367410 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A367410 (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) %e A367410 (4,1) (5,1) (5,2) (6,2) (6,3) %e A367410 (3,2,1) (6,1) (7,1) (7,2) %e A367410 (8,1) %e A367410 (4,3,2) %t A367410 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#,{2}]; If[d=={},{}, Range[Min@@d, Max@@d]]==Union[d])&]], {n,0,30}] %Y A367410 For parts instead of sums we have A001227: %Y A367410 - non-strict A034296, ranks A073491 %Y A367410 - complement A238007 %Y A367410 - non-strict complement A239955, ranks A073492 %Y A367410 The non-binary version is A188431: %Y A367410 - non-strict A126796, ranks A325781 %Y A367410 - complement A365831 %Y A367410 - non-strict complement A365924, ranks A365830 %Y A367410 The non-strict version is A367402. %Y A367410 The non-strict complement is A367403. %Y A367410 The complement is counted by A367411. %Y A367410 A000009 counts partitions covering an initial interval, ranks A055932. %Y A367410 A046663 counts partitions w/o submultiset summing to k, strict A365663. %Y A367410 A365543 counts partitions w/ submultiset summing to k, strict A365661. %Y A367410 Cf. A000041, A002033, A261036, A264401, A276024, A284640, A304792, A364272. %K A367410 nonn %O A367410 0,4 %A A367410 _Gus Wiseman_, Nov 18 2023