This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367411 #5 Nov 18 2023 18:07:58 %S A367411 0,0,0,0,0,0,0,1,2,2,4,5,8,10,14,16,23,27,35,42,52,61,75,89,106,126, %T A367411 149,173,204,237,274,319,369,424,490,560,642,734,838,952,1085,1231, %U A367411 1394,1579,1784,2011,2269,2554,2872,3225,3619,4054,4540,5077,5671,6332 %N A367411 Number of strict integer partitions of n whose semi-sums do not cover an interval of positive integers. %C A367411 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A367411 The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is counted under a(7). %e A367411 The a(7) = 1 through a(13) = 10 partitions: %e A367411 (4,2,1) (4,3,1) (5,3,1) (5,3,2) (5,4,2) (6,4,2) (6,4,3) %e A367411 (5,2,1) (6,2,1) (5,4,1) (6,3,2) (6,5,1) (6,5,2) %e A367411 (6,3,1) (6,4,1) (7,3,2) (7,4,2) %e A367411 (7,2,1) (7,3,1) (7,4,1) (7,5,1) %e A367411 (8,2,1) (8,3,1) (8,3,2) %e A367411 (9,2,1) (8,4,1) %e A367411 (5,4,2,1) (9,3,1) %e A367411 (6,3,2,1) (10,2,1) %e A367411 (6,4,2,1) %e A367411 (7,3,2,1) %t A367411 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#, {2}];If[d=={},{}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,30}] %Y A367411 For parts instead of sums we have A238007: %Y A367411 - complement A001227 %Y A367411 - non-strict complement A034296, ranks A073491 %Y A367411 - non-strict A239955, ranks A073492 %Y A367411 The non-strict version is A367403. %Y A367411 The non-strict complement is A367402. %Y A367411 The complement is counted by A367410. %Y A367411 The non-binary version is A365831: %Y A367411 - non-strict complement A126796, ranks A325781 %Y A367411 - complement A188431 %Y A367411 - non-strict A365924, ranks A365830 %Y A367411 A000009 counts partitions covering an initial interval, ranks A055932. %Y A367411 A046663 counts partitions w/o submultiset summing to k, strict A365663. %Y A367411 A365543 counts partitions w/ submultiset summing to k, strict A365661. %Y A367411 Cf. A000041, A002033, A261036, A264401, A276024, A284640, A304792, A364272. %K A367411 nonn %O A367411 0,9 %A A367411 _Gus Wiseman_, Nov 17 2023