cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367412 Triangle read by rows with all zeros removed where T(n,k) is the number of integer partitions of n with k different semi-sums.

This page as a plain text file.
%I A367412 #6 Nov 20 2023 08:14:06
%S A367412 1,1,1,1,2,1,3,1,1,3,3,1,5,3,2,1,4,7,2,1,1,6,7,6,2,1,6,10,6,7,1,7,12,
%T A367412 11,8,3,1,6,16,11,17,3,2,1,10,14,20,19,10,2,1,1,7,22,17,31,14,7,2,1,9,
%U A367412 22,27,37,22,11,6,1,10,24,27,51,32,16,15
%N A367412 Triangle read by rows with all zeros removed where T(n,k) is the number of integer partitions of n with k different semi-sums.
%C A367412 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.
%e A367412 Triangle begins:
%e A367412   1
%e A367412   1  1
%e A367412   1  2
%e A367412   1  3  1
%e A367412   1  3  3
%e A367412   1  5  3  2
%e A367412   1  4  7  2  1
%e A367412   1  6  7  6  2
%e A367412   1  6 10  6  7
%e A367412   1  7 12 11  8  3
%e A367412   1  6 16 11 17  3  2
%e A367412   1 10 14 20 19 10  2  1
%e A367412   1  7 22 17 31 14  7  2
%e A367412   1  9 22 27 37 22 11  6
%e A367412   1 10 24 27 51 32 16 15
%e A367412   1 11 27 39 57 43 27 22  4
%e A367412   1  9 33 34 79 57 36 39  7  2
%e A367412   1 13 31 51 86 77 45 62 14  4  1
%e A367412 Row n = 9 counts the following partitions:
%e A367412   (9)  (81)         (711)       (621)      (5211)
%e A367412        (72)         (6111)      (531)      (4311)
%e A367412        (63)         (522)       (432)      (4221)
%e A367412        (54)         (51111)     (33111)    (42111)
%e A367412        (333)        (441)       (222111)   (3321)
%e A367412        (111111111)  (411111)    (2211111)  (32211)
%e A367412                     (3222)                 (321111)
%e A367412                     (3111111)
%e A367412                     (22221)
%e A367412                     (21111111)
%t A367412 DeleteCases[Table[Length[Select[IntegerPartitions[n], Length[Union[Total/@Subsets[#, {2}]]]==k&]], {n,10},{k,0,n}],0,2]
%Y A367412 Row sums are A000041.
%Y A367412 Column k = 1 is A088922.
%Y A367412 The non-binary version (with zeros) is A365658.
%Y A367412 The strict non-binary version (with zeros) is A365832.
%Y A367412 The corresponding rank statistic is A366739.
%Y A367412 A001358 lists semiprimes, squarefree A006881, conjugate A065119.
%Y A367412 A126796 counts complete partitions, ranks A325781, strict A188431.
%Y A367412 A276024 counts positive subset-sums of partitions, strict A284640.
%Y A367412 A365924 counts incomplete partitions, ranks A365830, strict A365831.
%Y A367412 A366738 counts semi-sums of partitions, non-binary A304792.
%Y A367412 A366741 counts semi-sums of strict partitions, non-binary A365925.
%Y A367412 Cf. A046663, A117855, A122768, A238628, A299701, A365543, A366753, A367095.
%K A367412 nonn,tabf
%O A367412 0,5
%A A367412 _Gus Wiseman_, Nov 19 2023