This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367412 #6 Nov 20 2023 08:14:06 %S A367412 1,1,1,1,2,1,3,1,1,3,3,1,5,3,2,1,4,7,2,1,1,6,7,6,2,1,6,10,6,7,1,7,12, %T A367412 11,8,3,1,6,16,11,17,3,2,1,10,14,20,19,10,2,1,1,7,22,17,31,14,7,2,1,9, %U A367412 22,27,37,22,11,6,1,10,24,27,51,32,16,15 %N A367412 Triangle read by rows with all zeros removed where T(n,k) is the number of integer partitions of n with k different semi-sums. %C A367412 We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums. %e A367412 Triangle begins: %e A367412 1 %e A367412 1 1 %e A367412 1 2 %e A367412 1 3 1 %e A367412 1 3 3 %e A367412 1 5 3 2 %e A367412 1 4 7 2 1 %e A367412 1 6 7 6 2 %e A367412 1 6 10 6 7 %e A367412 1 7 12 11 8 3 %e A367412 1 6 16 11 17 3 2 %e A367412 1 10 14 20 19 10 2 1 %e A367412 1 7 22 17 31 14 7 2 %e A367412 1 9 22 27 37 22 11 6 %e A367412 1 10 24 27 51 32 16 15 %e A367412 1 11 27 39 57 43 27 22 4 %e A367412 1 9 33 34 79 57 36 39 7 2 %e A367412 1 13 31 51 86 77 45 62 14 4 1 %e A367412 Row n = 9 counts the following partitions: %e A367412 (9) (81) (711) (621) (5211) %e A367412 (72) (6111) (531) (4311) %e A367412 (63) (522) (432) (4221) %e A367412 (54) (51111) (33111) (42111) %e A367412 (333) (441) (222111) (3321) %e A367412 (111111111) (411111) (2211111) (32211) %e A367412 (3222) (321111) %e A367412 (3111111) %e A367412 (22221) %e A367412 (21111111) %t A367412 DeleteCases[Table[Length[Select[IntegerPartitions[n], Length[Union[Total/@Subsets[#, {2}]]]==k&]], {n,10},{k,0,n}],0,2] %Y A367412 Row sums are A000041. %Y A367412 Column k = 1 is A088922. %Y A367412 The non-binary version (with zeros) is A365658. %Y A367412 The strict non-binary version (with zeros) is A365832. %Y A367412 The corresponding rank statistic is A366739. %Y A367412 A001358 lists semiprimes, squarefree A006881, conjugate A065119. %Y A367412 A126796 counts complete partitions, ranks A325781, strict A188431. %Y A367412 A276024 counts positive subset-sums of partitions, strict A284640. %Y A367412 A365924 counts incomplete partitions, ranks A365830, strict A365831. %Y A367412 A366738 counts semi-sums of partitions, non-binary A304792. %Y A367412 A366741 counts semi-sums of strict partitions, non-binary A365925. %Y A367412 Cf. A046663, A117855, A122768, A238628, A299701, A365543, A366753, A367095. %K A367412 nonn,tabf %O A367412 0,5 %A A367412 _Gus Wiseman_, Nov 19 2023