This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367416 #48 Jan 30 2024 02:54:22 %S A367416 4,8,1,16,1,32,0,2,64,6,128,8,256,16,4,512,26,1024,17,10,2048,67,4,3, %T A367416 4096,100,10,8192,137,34,6,16384,426,28,1,32768,661,96,6,65536,1351, %U A367416 146,16,8,131072,2637,230,15,262144,3831,258,40,524288,8095,1130,50 %N A367416 Triangle read by rows: T(n,k) = number of solutions to +- 1^k +- 2^k +- 3^k +- ... +- n^k is a k-th power, n >= 2. %C A367416 In the case of n = 1, there are solutions for all k. In particular, 1^k is always a k-th power and -(1^k) is a k-th power for odd k. As a formula: T(1,k) = 1 + (k mod 2). This row is not included in the sequence. %e A367416 Triangle begins: %e A367416 k = 1 2 3 4 5 %e A367416 n= 2: 4; %e A367416 n= 3: 8, 1; %e A367416 n= 4: 16, 1; %e A367416 n= 5: 32, 0, 2; %e A367416 n= 6: 64, 6; %e A367416 n= 7: 128, 8; %e A367416 n= 8: 256, 16, 4; %e A367416 n= 9: 512, 26; %e A367416 n=10: 1024, 17, 10; %e A367416 n=11: 2048, 67, 4, 3; %e A367416 n=12: 4096, 100, 10; %e A367416 n=13: 8192, 137, 34, 6; %e A367416 n=14: 16384, 426, 28, 1; %e A367416 n=15: 32768, 661, 96, 6; %e A367416 n=16: 65536, 1351, 146, 16, 8; %e A367416 n=17: 131072, 2637, 230, 15; %e A367416 n=18: 262144, 3831, 258, 40; %e A367416 n=19: 524288, 8095, 1130, 50; %e A367416 n=20: 1048576, 15241, 854, 77, 6; %e A367416 ... %e A367416 The T(6,2) = 6 solutions are: %e A367416 - 1^2 - 2^2 + 3^2 - 4^2 + 5^2 + 6^2 = 49 = 7^2, %e A367416 - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 - 6^2 = 9 = 3^2, %e A367416 - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 81 = 9^2, %e A367416 + 1^2 - 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 1 = 1^2, %e A367416 + 1^2 + 2^2 - 3^2 + 4^2 + 5^2 - 6^2 = 1 = 1^2, %e A367416 + 1^2 + 2^2 + 3^2 - 4^2 - 5^2 + 6^2 = 9 = 3^2. %o A367416 (PARI)f(k,u)=my(x=0,v=vector(#u));for(i=1,#u,u[i]=if(u[i]==0,-1,1);v[i]=i^k);u*v~ %o A367416 is(k,u)=my(x=f(k,u));ispower(x,k) %o A367416 T(n,k)=my(u=vector(n,i,[0,1]),nbsol=0);if(k%2==1,u[1]=[1,1]);forvec(X=u,if(is(k,X),nbsol++));if(k%2==1,nbsol*=2);nbsol %Y A367416 Cf. A063890, A215083, A368243, A368845, A369629. %K A367416 nonn,tabf %O A367416 2,1 %A A367416 _Jean-Marc Rebert_, Jan 26 2024