A367419 a(n) = sqrt(A367418(n)).
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Plot f(a(n)) at (x,y) = (n mod m, floor(n/m)) for m = 857 and n = 734449, where f is a color function such that 1 = gray, red indicates primes, gold composite prime powers, green squarefree composites, blue and purple numbers neither squarefree nor prime powers, but purple additionally represents squareful numbers that are not prime powers.
Programs
-
Mathematica
s[n_] := Sqrt[n / Times @@ FactorInteger[n][[;; , 1]]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
-
PARI
b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1]^(f[i, 2]-1), 0)); } lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(sqrtint(b1), ", "))); }