cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367423 Expansion of e.g.f. 1 / sqrt(1 + log(1 - 2*x)).

This page as a plain text file.
%I A367423 #9 Jun 09 2025 10:48:40
%S A367423 1,1,5,41,465,6729,118437,2455809,58630401,1584058161,47783202213,
%T A367423 1591924168185,58055219617425,2300356943749305,98409722434170885,
%U A367423 4520749198158270225,221954573405993807745,11598560660172502840545,642753897983638032821445
%N A367423 Expansion of e.g.f. 1 / sqrt(1 + log(1 - 2*x)).
%F A367423 a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (2*j+1)) * |Stirling1(n,k)|.
%F A367423 a(0) = 1; a(n) = Sum_{k=1..n} 2^k * (1 - 1/2 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
%F A367423 a(n) ~ 2^(n + 1/2) * n^n / (exp(1) - 1)^(n + 1/2). - _Vaclav Kotesovec_, Jun 09 2025
%o A367423 (PARI) a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 2*j+1)*abs(stirling(n, k, 1)));
%Y A367423 Cf. A097397, A352117.
%K A367423 nonn
%O A367423 0,3
%A A367423 _Seiichi Manyama_, Nov 18 2023