This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367425 #10 Jul 16 2024 15:16:44 %S A367425 1,2,16,206,3634,81308,2203300,70110920,2562224200,105749169920, %T A367425 4864704955360,246809377578080,13690337856245920,824235763862751680, %U A367425 53528771980276233280,3730024030461061339520,277598358023069362894720,21975673266870666302685440 %N A367425 Expansion of e.g.f. 1 / (1 + log(1 - 3*x))^(2/3). %F A367425 a(n) = Sum_{k=0..n} 3^(n-k) * (Product_{j=0..k-1} (3*j+2)) * |Stirling1(n,k)|. %F A367425 a(0) = 1; a(n) = Sum_{k=1..n} 3^k * (1 - 1/3 * k/n) * (k-1)! * binomial(n,k) * a(n-k). %t A367425 With[{nn=20},CoefficientList[Series[1/(1+Log[1-3x])^(2/3),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jul 16 2024 *) %o A367425 (PARI) a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+2)*abs(stirling(n, k, 1))); %Y A367425 Cf. A367428. %K A367425 nonn %O A367425 0,2 %A A367425 _Seiichi Manyama_, Nov 18 2023