cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367426 Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(1/4).

This page as a plain text file.
%I A367426 #8 Nov 18 2023 08:36:11
%S A367426 1,1,9,137,2929,80689,2722745,108817785,5028704865,263891635425,
%T A367426 15505410046185,1008591244314345,71960155841683665,
%U A367426 5587928499550175505,469183592107676627865,42356983967876631615705,4091474631070907136246465,421070307443746576367920065
%N A367426 Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(1/4).
%F A367426 a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * |Stirling1(n,k)|.
%F A367426 a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 3/4 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
%o A367426 (PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*abs(stirling(n, k, 1)));
%Y A367426 Cf. A352073.
%K A367426 nonn
%O A367426 0,3
%A A367426 _Seiichi Manyama_, Nov 18 2023