cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367427 Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(3/4).

This page as a plain text file.
%I A367427 #8 Nov 18 2023 08:36:03
%S A367427 1,3,33,579,13857,419427,15344769,658225635,32388324801,1798082759235,
%T A367427 111173908726881,7575821838083331,564099365435411169,
%U A367427 45567223702943324067,3968829692958916703169,370764641464637535547299,36980399763333881818665345
%N A367427 Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(3/4).
%F A367427 a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+3)) * |Stirling1(n,k)|.
%F A367427 a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 1/4 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
%o A367427 (PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+3)*abs(stirling(n, k, 1)));
%Y A367427 Cf. A367429.
%K A367427 nonn
%O A367427 0,2
%A A367427 _Seiichi Manyama_, Nov 18 2023