cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367429 Expansion of e.g.f. 1 / (1 - log(1 + 4*x))^(3/4).

This page as a plain text file.
%I A367429 #10 Nov 18 2023 08:27:40
%S A367429 1,3,9,75,465,7827,54489,1985883,5684385,1038408483,-8440926039,
%T A367429 1026884514411,-24803157926799,1735078791616947,-69866656826056839,
%U A367429 4467425545047012219,-239734355869361550015,15985164846462976491075,-1031464442408734822175415
%N A367429 Expansion of e.g.f. 1 / (1 - log(1 + 4*x))^(3/4).
%F A367429 a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+3)) * Stirling1(n,k).
%F A367429 a(0) = 1; a(n) = Sum_{k=1..n} (-4)^k * (1/4 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k).
%o A367429 (PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 1));
%Y A367429 Cf. A352073, A365600.
%K A367429 sign
%O A367429 0,2
%A A367429 _Seiichi Manyama_, Nov 18 2023